• 제목/요약/키워드: Onset of flow instability

검색결과 26건 처리시간 0.027초

배플이 부착된 채널 유동의 불안정성 (FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

등온 으로 가열되는 수평 평판위 를 지나는 블라시우스 유동 의 와류불안정성 해석 (An Analysis on Vortex Instability of Blasius Flow Over Isothermally Heated Horizontal Plates)

  • 이형인;최창균;유정열
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.390-396
    • /
    • 1982
  • The onset of longitudinal vortices in horizontal Blasius flow isothermally heated from below is studied analytically. The assumption that at the onset of thermal instability the thermal disturbances are confined within the thermal boundary layer is employed for the limiting case of large Prandtl number. Polynomial representations for the basic quantities obtained by the integral method of the boundary layer analysis have been used. Then the system of differential equations and boundary conditions for disturbance quantities is reformulated in a convenient form so that the solutions may be constructed as rapidly convergent power series. The critical buoyancy parameter G $r_{x}$ $^{*}$ /R $e^{*1.5}$ falls between 2 and 6, which is about one order of magnitude lower than the existing experimental values. It is also shown that the positions of the onset of instability can be closely predicted by the present theory.y.y.

Improvement of the subcooled boiling model for the prediction of the onset of flow instability in an upward rectangular channel

  • Wisudhaputra, Adnan;Seo, Myeong Kwan;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1126-1135
    • /
    • 2022
  • The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.

A Study on the Instability Criterion for the Stratified Flow in Horizontal Pipe at Cocurrent Flow Conditions

  • Sung, Chang-Kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.463-468
    • /
    • 1997
  • This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow, Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al.[1] experimental data of pipes, it is shown that they are in good agreement with data.

  • PDF

가스 터빈 축 내부의 비정상 유동의 불안정성 (Transient Flow Instability inside a Gas Turbine Shaft)

  • 허남건;원찬식
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.103-107
    • /
    • 1999
  • Transient flow inside a hollow shaft of a Gas Turbine engine during sudden engine stop may result in non uniform heat transfer coefficients in the shaft due to flow instability similar to steady Taylor vortex, which may decrease the lifetime of the shaft. In the present study, transient Taylor vortex phenomena inside a suddenly stopped hollow shaft are studied analytically. Flow visualization is also performed to study the shape and onset time of Taylor Vortices for various initial rotational speed.

  • PDF

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.

2상 횡유동을 받는 튜브군의 유체탄성 불안정성 (Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow)

  • 김범식;장효환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1948-1966
    • /
    • 1991
  • 본 연구에서는 2상 횡유동을 받는 튜브군의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로부터 튜브군의 유체탄성 불안정성 상수에 관해 고찰하였다. 실험은 먼저 p/d=1.47 및 1.32 튜브군에 대해 수행되었는데, 이들 튜브 군의 결과는 참고문헌에 발표하였다. 본 논문은 후속 실험으로 수행된 p/d=1.22인 튜브군을 사용하여 유체탄성 불안정성 상수를 고찰한 참고문헌의 후속논문이다. 실 험은 액체상태로 부터 99% 보이드율(void fraction)까지 변화된 2상 유동에서 튜브가 유체탄성 불안정성 상태에 도달할 때까지 점진적으로 증가하였다.실험결과는 p/d= 1.32 alc 1.47 튜브군의 유체탄성 불안정성 결과들과 종합. 비교되었다.

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

이어도 기상 관측 자료를 활용한 장마 시작일 분석 (Analysis for Onset of Changma Using Ieodo Ocean Research Station Data)

  • 오효은;하경자;심재설
    • 대기
    • /
    • 제24권2호
    • /
    • pp.189-196
    • /
    • 2014
  • The definition of onset date of Changma is revisited in this study using a quality controlled Ieodo ocean research station data. The Ieodo station has great importance in terms of its southwest location from Korean Peninsula and, hence, makes it possible to predict Changma period in advance with less impact of continents. The onset date of Changma using the Ieodo station data is defined by the time that meridional wind direction changes and maintains from northerly to southerly, and then the zonal wind changes from easterly to westerly after first June. This definition comes from a recognition that the establishment and movement of the western North Pacific subtropical high (WNPSH) cause Changma through southwesterly flow. The onset data of Changma has been determined by large-scale dynamic-thermodynamic characteristics or various meteorological station data. However, even the definition based on circulation data at the Ieodo station has a potential for the improved prediction skill of the onset date of Changma. The differences between before and after Changma, defined as Ieodo station data, are also found in synoptic chart. The convective instability and conspicuous circulations, corresponding low-level southwesterly flow related to WNPSH and strong upper-level zonal wind, are represented during Changma.

밑으로부터 가열되는 평면 Couette 유동에서 점성소산이 열적 불안정성에 미치는 영향 (Effects of Viscous Dissipation on the Thermal Instability of Plane Couette Flow Heated from Below)

  • 유정열;박영무
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.489-498
    • /
    • 1988
  • An analysis has been given for the effect of viscous dissipation on the thermal instability of plane Couette flow between two parallel plates maintained at different constant temperatures. Under the assumption that the principle of the exchange of stabilities holds, stationary disturbance quantities in the form of longitudinal vortices are considered. The magnitudes of disturbance quantities are then represented as fast convergent power series so that the eigenvalue problem for determining the onset conditions of the thermal instability may be reduced to a simplified problem of finding the roots of a $4{\times}4$ determinant. It is shown that as the magnitude of the visucous dissipation increases the flow becomes more susceptible to instabilities, which is in very good agreement with previous results obtained in some related researches.

  • PDF