In this practice article, we present the results of a scenario planning approach that is a hybrid of the three main schools of thought. Our research objective was to study the future of Interactive Digital Media applications such as online music, on-demand television and massively multi-player online role-playing games. Our approach, while essentially qualitative in nature, nevertheless draws from the rigors of the quantitative school in identifying and then tracking the significant dimensions of analysis that emerge over time as strands of events leading to plausible scenarios. Our empirical analysis revealed mapping strands to three themes - ownership, distribution and innovation - which we used in an expert validation exercise to formulate scenarios. We present and discuss the major findings and implications of this empirical investigation. In a nutshell, we conjecture that an open, competitive IDM marketplace with performance safeguards may serve both and lead to a win-win scenario. While there are differences among IDM sectors, a unified approach to regulation and policy would be effective.
RFID is used for tracking systems in various business fields these days and these systems brought considerable efficiencies and cost savings to companies. Real-time based information acquired through RFID devices could be a valuable source of information for making decisions if it is combined with decision support tools like OLAP of a data warehouse that has originally been designed for analyzing static and historical data. As an effort of extending the data source of a data warehouse, RFID is combined with a data warehouse in this research. And OLAP is designed to analyze the dynamic real-time based information gathered through RFID devices. The implemented prototype shows that ubiquitous computing technology such as RFID could be a valuable data source for a data warehouse and is very useful for making decisions when it is combined with online analysis. The system architecture of such system is suggested.
To improve the performance of sensorless induction motor (IM) drives, an adaptive speed estimation method based on a strong tracking extended Kalman filter with a least-square algorithm (LS-STEKF) for induction motors is proposed in this paper. With this method, a fading factor is introduced into the covariance matrix of the predicted state, which forces the innovation sequence orthogonal to each other and tunes the gain matrix online. In addition, the estimation error is adjusted adaptively and the mutational state is tracked fast. Simultaneously, the fading factor can be continuously self-tuned with the least-square algorithm according to the innovation sequence. The application of the least-square algorithm guarantees that the information in the innovation sequence is extracted as much as possible and as quickly as possible. Therefore, the proposed method improves the model adaptability in terms of actual systems and environmental variations, and reduces the speed estimation error. The correctness and the effectiveness of the proposed method are verified by experimental results.
The anonymity and decentralized nature of cryptocurrencies make them highly susceptible to criminal exploitation, requiring the development of effective tracking techniques. By analyzing various open source intelligence(OSINT), such as public data, social media, and online forums, open source intelligence can provide useful information for identifying criminals and tracking the flow of cryptocurrency funds. In this study, we present a comprehensive proposal for the utilization of open source intelligence. We will discuss the current status and trends of cryptocurrency and related crimes, and introduce the concept and methodology of open source intelligence. The paper then focuses on five methods and seven frameworks of open source intelligence for tracking and analyzing cryptocurrency-related crimes, and presents techniques for the integrated application of open source intelligence methods and frameworks.
International Journal of Advanced Culture Technology
/
v.8
no.3
/
pp.54-60
/
2020
Online cybercrime has various causes. The criminal guilty language, Criminal lingo is active in the shaded area with the bilateral aspect of the word on cyber. It has been continuously producing massive risk factors in cyberspace. Criminals are shared and disseminated online. It has been linked with fake news and aids to suicide that has recently become an issue. Thus the criminal lingo has become a real danger factor on cyber interface. Recently, Criminal lingo is shared and distributed as cyber hazard information. It is transformed that damaging to the youth and ordinary people through the internet and social networks. In order to take action, it is necessary to construct an expert system based on AI to implement a smart management architecture with block-chain technology. In this paper, we study technically a new smart management architecture which uses artificial intelligence based decision algorithm and block-chain tracking technology to prevent the spread of criminal lingo factors in the evolving cyber world. In addition, through the off-line regular patrol program of police units, we proposed the conversion of online regular patrol program for "cyber harem area".
Purpose: This study examined the influence of visuomotor congruency on learning a relative phase relationship between a single joint movement and an external signal. Methods: Participants (N=5) were required to rhythmically coordinate elbow flexion-extension movements with a continuous sinusoidal wave (0.375 Hz) at a $90^{\circ}$ relative phase relationship. The congruent group was provided online feedback in which the elbow angle decreased (corresponding to elbow flexion) as the angle trajectory was movingup, and vice versa. The incongruent group was provided online feedback in which the elbow angle decreased as the angle trajectory was moving down, and vice versa. There were two practice sessions (day 1 and 2) and each session consisted of 6 trials per block (5 blocks per session). Retention tests were performed 24 hours after session 2, and only the external sinusoidal wave was provided. Repeated ANOVAs were used for statistical analysis. Results: During practice, the congruent group was significantly less variable than the incongruent group. Phase variability in the incongruent group did not significantly change across blocks, while variability decreased significantly in the congruent group. In retention, the congruent group produced the required $90^{\circ}$ relative phase pattern with significantly less phase variability than the incongruent group. Conclusions: Congruent visual feedback facilitates learning. Moreover, the deprivation of online feedback does not affect the congruent group but does affect the incongruent group in retention.
This paper presents a low-cost prototype for monitoring online the maximum power produced by a domestic photovoltaic (PV) system using Internet of Things (IoT) technology. The most common tracking algorithms (P&O, InCond, HC, VSS InCond, and FL) were first simulated using MATLAB/Simulink and then implemented in a low-cost microcontroller (Arduino). The current, voltage, load current, load voltage, power at the maximum power point, duty cycle, module temperature, and in-plane solar irradiance are monitored. Using IoT technology, users can check in real time the change in power produced by their installation anywhere and anytime without additional effort or cost. The designed prototype is suitable for domestic PV applications, particularly at remote sites. It can also help users check online whether any abnormality has happened in their system based simply on the variation in the produced maximum power. Experimental results show that the system performs well. Moreover, the prototype is easy to implement, low in cost, saves time, and minimizes human effort. The developed monitoring system could be extended by integrating fault detection and diagnosis algorithms.
Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.
In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.11a
/
pp.11-12
/
2017
본 논문에서는 부류가 정해진 훈련 집합이 불필요한 온라인 학습 기반 추적 기법을 제안한다. 추적기의 학습을 위해 합성곱 신경망(convolutional neural network: CNN)을 이용하였다. 추적영상으로부터 직접 훈련 샘플을 수집함으로써 분류기 학습을 위한 비용을 감소시킬 수 있었고, 목표 영상에 적응적인 객체 모델을 생성할 수 있다. 실험 결과를 통해 제안하는 방법이 우수한 성능을 보임을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.