Cho, Eunbyul;Lee, Ju-Hyun;Kwon, O Sang;Hong, Jiseong;Cho, Nam Geun
Journal of Acupuncture Research
/
제38권3호
/
pp.219-226
/
2021
Background: The objective structured clinical examination (OSCE) is a widely used method to assess the clinical performance of students in clinical practice. Although OSCE has been used for undergraduate students of Korean medicine, this has not been widely reported. Methods: In 2020, the practical course for acupuncture and moxibustion medicine (acupuncture, electroacupuncture, pharmacopuncture, auricular acupuncture, and burning acupuncture) was taught using flipped learning, according to clinical practice guidelines, and assessed by the OSCE. The appropriateness of this model of education and its evaluation using OSCE were evaluated using a 5-point Likert scale, and the results were analyzed. Results: Of the respondents, 67% reported that the OSCE accurately reflected their competency, and 82% reported that online video lectures helped them to improve their clinical skills. The average adequacy score of the model was > 3.7/5, and the average adequacy score of the checklist used in the OSCE was > 4.1/5 for all 5 clinical application skills. The difference in the mean self-efficacy score between students who had taken the OSCE and those students who had not taken the OSCE, was highest in the burning acupuncture group (0.923). Conclusion: This study showed that students' satisfaction with the OSCE was high and flipped learning was an effective education model. In the future, models representing the human body or simulated patients should be used to evaluate students' skills and attitude.
온라인 상에서 판매되는 상품은 매우 다양하지만, 소비자에게 판매 가격을 제시하거나 소개글을 통해서 상품에 대한 구체적인 설명을 제공한다는 점은 모든 상품에 있어서 가장 기본이 되는 공통적인 특징이다. 만약, 상품의 실제 품질이나 가격과는 독립적으로 상품 소개글이 판매에 미치는 영향력을 파악할 수 있다면 어떠한 소개글이 상품의 판매를 촉진하는 측면에서 더 좋은 글인지 분별할 수 있게 된다. 이런 관점에서 본 연구는 상품 소개글과 판매 성과의 관계를 파악하기 위한 목적으로 수행되었으며, 구체적으로는 온라인 시장에서 한글로 작성된 상품 소개글에 쓰인 각각의 표현 별로 소비자가 구매를 결정하는 데에 어떤 영향을 미치는지를 분석하고자 하였다. 한글 형태소 분석기를 사용하여 국내 앱 시장에서 수집된 앱 소개글 및 판매이력 데이터로부터 상품을 설명하는 주요 속성과 그 속성에 대한 평가를 추출하였으며, 추출된 키워드를 입력 변수로 구성한 계량경제학 모형을 구축하였고, 구체적으로 특정 표현들이 판매 성과에 미치는 영향을 구축된 모형을 사용하여 계량적으로 측정하였다. 앱의 카테고리 별로 표현의 종류가 상이하게 나타남이 관찰됨에 따라, 분석은 각 카테고리 별로 수행되었다. 유료 앱과 무료 앱에 대해서 데이터 분석을 수행한 결과, 판매 성과에 영향을 미치는 '속성과 평가' 키워드를 그 영향력의 크기 별로 파악할 수 있었으며, 특히 무료 앱의 경우는 무료로 이용할 수 있음에도 불구하고 품질이 좋다는 것을 강조했을 때 판매량을 더 높일 수 있다는 것이 확인되었다. 본 연구는 모바일 앱에 대해 수행되었으나, 온라인에서 거래되는 다양한 상품에 대해서도 소개글이 판매 성과에 미치는 영향을 분석할 수 있는 모형으로 활용될 수 있다. 마지막 장에서는 기업의 마케팅 매니저가 본 연구에서 제시하는 연구 방법론과 분석 결과를 활용할 수 있는 방안을 제시하였다.
코딩 스타일을 준수하는 것은 코드의 가독성이 좋아지고, 테스트 및 유지 보수에 필요한 비용을 줄일 수 있어 기업과 개발자 모두에게 중요하다. 하지만 프로그래밍 언어 수업에서 코딩 스타일을 교육하는 데 어려움이 있다. 왜냐하면 코딩 스타일 학습을 위한 환경 구축도 힘들고, 초보자를 위한 코딩 스타일 규칙이 따로 정의되어 있지 않다. 학습자 측에서는 코딩 스타일을 준수하지 않더라도 학점에 반영되지 않으므로, 학습의 필요성이 별로 와닿지 않는다. 본 논문에서는 온라인 평가 시스템을 위한 코딩 스타일 검사 시스템을 소개한다. 제안 시스템은 C와 Java, Python 코딩 스타일을 검사하고 평가할 수 있도록 구현하였다. 또한, 언어별 도구에서 제공하는 규칙 1,023개 중 23.08%인 234개를 반영하여 수업 진도에 따라 코딩 스타일 규칙을 적용할 수 있게 하였으며, 기본 점수에 품질 점수를 추가로 부여하여 학습자들의 코딩 스타일 학습 동기를 부여하였다. 코딩 스타일 교육 시스템을 도입한 후 최초 제출 시 점수가 1주 차에서 25점 이상을 받은 학생이 18명이었지만, 6주 차에서 44명으로 149.47% 증가했다. 학습자는 코딩 스타일 검사 시스템을 이용하여 코딩 스타일 규칙을 적용하는 방법을 학습하고, 이후 코드를 구현할 때 제시한 코딩 스타일을 준수하여 코드를 구현할 수 있었다.
본 논문에서는 망각곡선을 응용한 반복학습시기 설정 및 학습자 수준과 단어 난이도 자동계산 방법이 적용된 영어단어 암기시스템을 소개한다. 우리 시스템은 망각곡선을 사용해서 학습자의 단어암기 횟수에 따라 적절한 반복 주기를 정하고 그 시기에 복습을 요구한다. 학습자가 알고 있는 단어들에 대한 복습시간을 없애고 잊어버릴 확률이 가장 높은 단어들을 우선 적으로 복습하는 것으로 시간을 절약 할 수 있는 것이다. 또 수준에 맞는 난이도의 단어들을 제공함으로써 학습 흥미와 성취도 유지에 기여할 수 있다. 학습자의 수준을 고려하지 않은 난이도의 단어를 무작위로 제공하거나 이미 다른 사람들의 평가에 맞춰진 난이도의 단어들을 제공하는 기존의 시스템과 차별되도록 학습자와 단어 난이도 설정에 온라인 체스게임 랭킹시스템에서 사용하고 있는 "Glicko" 시스템을 적용시켰다. 플레이어간의 대결을 통해서 서로의 실력이 결정되고 매칭되는 이 시스템을 우리는 단어와 사람간의 대결로 시스템에 적용하였다. 그것으로 인해 학습하는 사람의 수준과 단어들의 난이도가 실시간으로 측정되고 학습과정에 반영이 된다. 이 외에 부가적으로 분산학습, 시험형식의 문제풀이의 즉각적인 피드백을 활용하여 영어 단어 암기의 효율성을 극대화 한다.
본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.
PC의 빠른 보급으로 많은 사용자가 PC로 다양한 콘텐츠를 즐기고 있다. 특히 최근 들어 청소년들의 PC이용률이 급격히 증가했다. 청소년들은 이러한 PC를 이용하여 보다 쉽게 정보를 얻을 수 있고, 특히 온라인 게임을 통하여 스트레스를 해소하고, 가상현실에서의 또 다른 재미를 느낄 수 있다. 이렇게 일찍부터 빠르게 발전하고 있는 IT문화를 접하는 것은 좋은 일인 것은 분명하다. 하지만 그로 인해 청소년들은 자연스럽게 실내 활동이 많아지게 되면서 야외활동이 줄어들게 됨에 따라 세상을 보는 시야 또한 많이 좁아지게 되었다. 따라서 청소년들의 야외활동을 유도하기 위해 최근 많이 사용하는 스마트 폰 어플리케이션을 이용하여 현장체험 쿠폰 시스템을 구축하게 되었다. 그리고 HTML5를 기반으로 하는 하이브리드 앱을 개발함으로써 디바이스의 구분없이 사용할 수 있도록 하였다. 따라서 이 어플리케이션을 통해서 청소년들의 현장체험에 대한 관심과 동기를 유발시킴으로써 많은 볼거리를 체험하고, 다양한 시각에서 세상을 바라볼 수 있다.
지난 70여 년간 영화와 텔레비전은 인류의 소통 방식에 획기적인 변화를 가져왔다. 하지만 이러한 발전에도 TV는 전파, 영화는 스크린이라는 매체의 제약으로 인해 다수를 대상으로 하는 소통 수단으로만 사용되어 왔다. 그러나 인터넷과 온라인 비디오의 발전은 이러한 제약을 없애고 지구 반대편에서 올린 유투브 영상을 1억 명의 사람이 시청하는 시대가 왔다. 지금 전달하고자 하는 메시지도 누구에게든 전달될 수 있지만 이러한 메시지를 담은 영상을 제작하는 것은 소통의 마지막 장애물로 남아있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 웹 어플리케이션과 AWS를 통한 동영상제작 프로그램을 구현하였다. 본 시스템은 기본적으로 웹 애플리케이션을 통해 관리자에게 쉬운 인터페이스를 통한 영상제작, 정보관리와 AWS를 통해 인터넷 상의 서버에 프로그램을 두고 컴퓨터나 스마트 폰 등에 할당받은 강의, 학습자료, 추천학습 가이드 등을 제공하여 교육 영상제작 서비스에 효율을 높이기 위해 구현하였다.
본 논문은 고객관계관리를 위한 시장 세분화를 하기 위해 자주 사용되는 SOM에 대하여 고찰한다. 일반적으로, SOM은 군집의 수를 미리 파악하기 위하여, 구체적인 군집 분석이 이루어지기 이전에 사용된다. 그러나 인터넷이 발달하고 수집 가능한 데이터의 종류와 양이 증가함에 따라 복합적인 분석이 필요하게 되었다. 또한, 그에 따라 한가지 주제만으로 군집을 파악하는 것보다는 여러 가지의 주제들을 대상으로 고객데이터의 군집을 파악해야 하는 경우가 많이 발생하게 된 것이다. 따라서 이 논문에서는 이렇게 한가지의 주제가 아닌 여러 가지의 주제로 군집분석을 할 경우 한번으로 이루어지는 SOM 어프로치가 과연 군집의 수를 파악할 수 있는지를 실험하였다. 이미 구조를 알고 있는 데이터를 생성하여 실험을 해본 결과, 전체 데이터를 대상으로 여러 주제를 한꺼번에 포함시킨 경우 (single SOM 방식) 에는 그 구조를 제대로 파악하지 못하였으며, 하나의 주제마다 각기 다른 SOM을 사용(multiple SOM 방식)한 결과, 미리 정해졌던 구조를 제대로 파악할 수 있었다. 따라서 이 논문은 군집분석을 하게 될 경우, 좀더 조심스러운 접근법이 필요하며, 여러가지 주제를 포함하고 있는 데이타를 다룰 경우, SOM 분석 방법에 대하여 논의하였다.
Steele, Thomas N.;Galarza-Paez, Laura;Aguilo-Seara, Gabriela;David, Lisa R.
Archives of Plastic Surgery
/
제48권1호
/
pp.107-113
/
2021
Background Applicants to integrated plastic and reconstructive surgery (PRS) residency in the United States spend exorbitant amounts of time and money throughout the interview process. Outside of first-hand experience through a visiting rotation, applicants utilize various resources in learning about a program. Today's applicants are "Millennials," the demographic cohort raised during the information age and proficient with digital technology. The authors evaluated whether programs have a presence on social media, and whether applicants are following these accounts. Methods An online survey was sent to applicants to a single integrated plastic surgery program evaluating basic demographics, social media utilization, and sources of information accessed throughout the residency application process. A manual search of popular social media platforms (Instagram, Facebook, and Twitter) was performed in October 2019. Accounts affiliated with integrated PRS programs were identified and analyzed. Results Eighty-four of 222 applicants (37.8%) completed the survey. Ninety-six percent of applicants were within the Millennial demographic. Ninety-six percent of applicants had some form of social media presence, with Facebook (90%) and Instagram (87%) being the most popular platforms. Seventy-three percent of applicants reported following a PRS residency social media account. As of October 2019, 59 integrated residency programs (73%) have active Instagram accounts. Conclusions Applicants still rely on the program website when researching potential residencies, but social media is being rapidly adopted by programs. Program social media accounts should be used as a dynamic form of communication to better inform applicants of program strengths and weaknesses.
With the recent application of deep learning to Natural Language Processing (NLP), the performance of NLP has improved significantly and NLP is emerging as a core competency of organizations. However, when encountering NLP use cases that are sporadically reported through various online and offline channels, it is often difficult to come up with a big picture of how to understand and interpret them or how to connect them to business. This study presents a framework for systematically analyzing NLP use cases, considering the characteristics of NLP techniques applicable to almost all industries and business functions, environmental changes in the era of the Fourth Industrial Revolution, and the effectiveness of adopting NLP reflecting all business functional areas. Through solving research questions based on the framework, the usefulness of it is validated. First, by accumulating NLP use cases and pivoting them around the business function dimension, we derive how NLP techniques are used in each business functional area. Next, by synthesizing related surveys and reports to the accumulated use cases, we draw implications for each business function and major NLP techniques. This work promotes the creation of innovative business scenarios and provides multilateral implications for the adoption of NLP by systematically viewing NLP techniques, industries, and business functional areas. The use case analysis framework proposed in this study presents a new perspective for research on new technology use cases. It also helps explore strategies that can dramatically improve organizational performance through a holistic approach that encompasses all business functional areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.