• Title/Summary/Keyword: Online Knowledge Network

Search Result 111, Processing Time 0.024 seconds

Information Security Job Skills Requirements: Text-mining to Compare Job Posting and NCS (정보보호 직무 수행을 위해 필요한 지식 및 기술: 텍스트 마이닝을 이용한 구인광고와 NCS의 비교)

  • Hyo-Jung Jun;Byeong-Jo Park;Tae-Sung Kim
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.179-197
    • /
    • 2023
  • As a sufficient workforce supports the industry's growth, workforce training has also been carried out as part of the industry promotion policy. However, the market still has a shortage of skilled mid-level workers. The information security disclosure requires organizations to secure personnel responsible for information security work. Still, the division between information technology work and job areas is unclear, and the pay is not high for responsibility. This paper compares job keywords in advertisements for the information security workforce for 2014, 2019, and 2022. There is no difference in the keywords describing the job duties of information security personnel in the three years, such as implementation, operation, technical support, network, and security solution. To identify the actual needs of companies, we also analyzed and compared the contents of job advertisements posted on online recruitment sites with information security sector knowledge and skills defined by the National Competence Standards used for comprehensive vocational training. It was found that technical skills such as technology development, network, and operating system are preferred in the actual workplace. In contrast, managerial skills such as the legal system and certification systems are prioritized in vocational training.

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

The Impact of Block Chain Characteristics on the Intention to Use Hotel Reservation System in China (중국에서의 호텔예약 시스템의 블록체인 특성이 사용의도에 미치는 영향)

  • JIN, Peng-Ru;LEE, Jong-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.8
    • /
    • pp.33-44
    • /
    • 2019
  • Purpose - As the scope of existing digital transformation expanded to various degrees, the Fourth Industrial Revolution came into being. In 2016, Klaus Schwab, Chairman of the World Economic Forum (WEF), said that the new technologies that lead the fourth industrial revolution are AI, Block chain, IoT, Big Data, Augmented Reality, and Virtual Reality. This technology is expected to be a full-fledged fusion of digital, biological and physical boundaries. Everything in the world is connected to the online network, and the trend of 'block chain' technology is getting attention because it is a core technology for realizing a super connective society. If the block chain is commercialized at the World Knowledge Forum (WKF), it will be a platform that can be applied to the entire industry. The block chain is rapidly evolving around the financial sector, and the impact of block chains on logistics, medical services, and public services has increased beyond the financial sector. Research design, data, and methodology - Figure analysis of data and social science analytical software of IBM SPSS AMOS 23.0 and IBM Statistics 23.0 were used for all the data researched. Data were collected from hotel employees in China from 25th March to 10th May. Results - The purpose of this study is to investigate the effect of the block chain characteristics of the existing hotel reservation system on the intention to use and to examine the influence of the block chain characteristics of the hotel reservation system on the intention to use, We rearranged the variables having the same or similar meaning and analyzed the effect of these factors on the intention to use the block chain characteristic of the hotel reservation system. 339 questionnaires were used for analysis. Conclusions - There are only sample hotel workers in this study, and their ages are in their 20s and 30s. In future studies, samples should be constructed in various layers and studied. In this study, the block chain characteristics are set as five variables as security, reliability, economical efficiency, availability, and diversity. Among them, Security and reliability made positive effects on the perceived usefulness. Also, security and economics did on the perceived ease. Availability and diversity did on both perceived usefulness and perceived ease. Perceived ease did on perceived usefulness. And perceived ease and perceived usefulness did on user intent. But security and economics did not on the perceived usefulness

The Effect of the Innovation Capability and the Absorptive Capacity on Market Orientation, Technology Orientation, and Business Performance of IT-BPO Firms (IT-BPO 기업의 혁신역량과 흡수역량 요인이 시장지향성, 기술지향성 및 경영성과에 미치는 영향)

  • Kim, Wan-kang;Lee, So-young
    • Journal of Venture Innovation
    • /
    • v.6 no.1
    • /
    • pp.115-137
    • /
    • 2023
  • This study analyzed the relationship between organizational innovative capability and absorptive capacity, market and technology orientations, and their impact on business performance for IT-BPO companies that are required to absorb new technologies from a leading perspective in the digital transformation era. To achieve this, an online specialized research company and offline surveys were conducted on 291 domestic IT-BPO companies, and SPSS 23 was used for descriptive statistics and reliability analysis while AMOS 23 was used for hypothesis testing including validity and mediating effects. The main findings were as follows: First, in the relationship between innovation and absorptive capabilities and Market Orientation Strategic(MOS), learning capability and knowledge network capability were found to have a statistically significant positive (+) effect on MOS. In the relationship between innovation and absorptive capabilities and Technology Orientation Strategic(TOS), R&D capability, potential absorptive capacity, and realized absorptive capacity had a statistically significant positive (+) effect on TOS. Second, in the relationship between innovation and absorptive capabilities and BP, only R&D capability was found to have a significant effect on BP. Third, both market orientation and technology orientation were found to have a significant positive (+) effect on BP. These findings suggest that effective competency factors can be identified according to the market and technology orientations pursued by IT-BPO companies to increase their growth and value creation, and provide implications for developing differentiated competency enhancement strategies based on strategic objectives.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling (토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석)

  • Heeyoung Son;Myungjong Lee;Youngjo Byun
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.315-338
    • /
    • 2022
  • In 1986, Korea established legal systems to support small and medium-sized start-ups, which becomes the main pillars of national development. The legal systems have stimulated start-up ecosystems to have more than 1 million new start-up companies founded every year during the past 30 years. To analyze the trend of Korea's start-up ecosystem, in this study, we collected 1.18 million news articles from 1991 to 2020. Then, we extracted news articles that have the keywords "start-up", "venture", and "start-up". We employed network analysis and topic modeling to analyze collected news articles. Our analysis can contribute to analyzing the government policy direction shown in the history of start-up support policy. Specifically, our analysis identifies the dynamic characteristics of government influenced by external environmental factors (e.g., society, economy, and culture). The results of our analysis suggest that the start-up ecosystems in Korea have changed and developed mainly by the government policies for corporation governance, industrial development planning, deregulation, and economic prosperity plan. Our frequency keyword analysis contributes to understanding entrepreneurial productivity attributed to activities among the networked components in industrial ecosystems. Our analyses and results provide practitioners and researchers with practical and academic implications that can help to establish dedicated support policies through forecast tasks of the economic environment surrounding the start-ups. Korean entrepreneurial productivity has been empowered by growing numbers of large companies in the mobile phone industry. The spectrum of large companies incorporates content startups, platform providers, online shopping malls, and youth-oriented start-ups. In addition, economic situational factors contribute to the growth of Korean entrepreneurial productivity the economic, which are related to the global expansions of the mobile industry, and government efforts to foster start-ups. Our research is methodologically implicative. We employ natural language processes for 30 years of media articles, which enables more rigorous analysis compared to the existing studies which only observe changes in government and policy based on a qualitative manner.

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

An Analysis of the Roles of Experience in Information System Continuance (정보시스템의 지속적 사용에서 경험의 역할에 대한 분석)

  • Lee, Woong-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.45-62
    • /
    • 2011
  • The notion of information systems (IS) continuance has recently emerged as one of the most important research issues in the field of IS. A great deal of research has been conducted thus far on the basis of theories adapted from various disciplines including consumer behaviors and social psychology, in addition to theories regarding information technology (IT) acceptance. This previous body of knowledge provides a robust research framework that can already account for the determination of IS continuance; however, this research points to other, thus-far-unelucidated determinant factors such as habit, which were not included in traditional IT acceptance frameworks, and also re-emphasizes the importance of emotion-related constructs such as satisfaction in addition to conscious intention with rational beliefs such as usefulness. Experiences should also be considered one of the most important factors determining the characteristics of information system (IS) continuance and the features distinct from those determining IS acceptance, because more experienced users may have more opportunities for IS use, which would allow them more frequent use than would be available to less experienced or non-experienced users. Interestingly, experience has dual features that may contradictorily influence IS use. On one hand, attitudes predicated on direct experience have been shown to predict behavior better than attitudes from indirect experience or without experience; as more information is available, direct experience may render IS use a more salient behavior, and may also make IS use more accessible via memory. Therefore, experience may serve to intensify the relationship between IS use and conscious intention with evaluations, On the other hand, experience may culminate in the formation of habits: greater experience may also imply more frequent performance of the behavior, which may lead to the formation of habits, Hence, like experience, users' activation of an IS may be more dependent on habit-that is, unconscious automatic use without deliberation regarding the IS-and less dependent on conscious intentions, Furthermore, experiences can provide basic information necessary for satisfaction with the use of a specific IS, thus spurring the formation of both conscious intentions and unconscious habits, Whereas IT adoption Is a one-time decision, IS continuance may be a series of users' decisions and evaluations based on satisfaction with IS use. Moreover. habits also cannot be formed without satisfaction, even when a behavior is carried out repeatedly. Thus, experiences also play a critical role in satisfaction, as satisfaction is the consequence of direct experiences of actual behaviors. In particular, emotional experiences such as enjoyment can become as influential on IS use as are utilitarian experiences such as usefulness; this is especially true in light of the modern increase in membership-based hedonic systems - including online games, web-based social network services (SNS), blogs, and portals-all of which attempt to provide users with self-fulfilling value. Therefore, in order to understand more clearly the role of experiences in IS continuance, analysis must be conducted under a research framework that includes intentions, habits, and satisfaction, as experience may not only have duration-based moderating effects on the relationship between both intention and habit and the activation of IS use, but may also have content-based positive effects on satisfaction. This is consistent with the basic assumptions regarding the determining factors in IS continuance as suggested by Oritz de Guinea and Markus: consciousness, emotion, and habit. The principal objective of this study was to explore and assess the effects of experiences in IS continuance, with special consideration given to conscious intentions and unconscious habits, as well as satisfaction. IN service of this goal, along with a review of the relevant literature regarding the effects of experiences and habit on continuous IS use, this study suggested a research model that represents the roles of experience: its moderating role in the relationships of IS continuance with both conscious intention and unconscious habit, and its antecedent role in the development of satisfaction. For the validation of this research model. Korean university student users of 'Cyworld', one of the most influential social network services in South Korea, were surveyed, and the data were analyzed via partial least square (PLS) analysis to assess the implications of this study. In result most hypotheses in our research model were statistically supported with the exception of one. Although one hypothesis was not supported, the study's findings provide us with some important implications. First the role of experience in IS continuance differs from its role in IS acceptance. Second, the use of IS was explained by the dynamic balance between habit and intention. Third, the importance of satisfaction was confirmed from the perspective of IS continuance with experience.

The Impact of Entrepreneurs' Cognitive Biases on Business Opportunity Evaluation Depending on Social Networks (기업가의 인지편향이 사회적 네트워크에 따라 사업 기회 평가에 미치는 영향)

  • Jang, Hyo Shik;Yang, Dong Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.185-196
    • /
    • 2023
  • This paper investigates the effects of entrepreneurs' cognitive biases on business opportunity evaluation, given their strong entrepreneurial spirit, which is characterized by innovation, proactivity, and risk-taking. When making decisions related to business activities, entrepreneurs typically make rational judgments based on their knowledge, experience, and the advice of external experts. However, in situations of extreme stress or when quick decisions are required, they often rely on heuristics based on their cognitive biases. In particular, we often see cases where entrepreneurs fail because they make decisions based on heuristics in the process of evaluating and selecting new business opportunities that are planned to guarantee the growth and sustainability of their companies. This study was conducted in response to the need for research to clarify the effects of entrepreneurs' cognitive biases on new business opportunity evaluation, given that the cognitive biases of entrepreneurs, which are formed by repeated successful experiences, can sometimes lead to business failure. Although there have been many studies on the effects of cognitive biases on entrepreneurship and opportunity evaluation among university students and general people who aspire to start a business, there have been few studies that have clarified the relationship between cognitive biases and social networks among entrepreneurs. In contrast to previous studies, this study conducted empirical surveys of entrepreneurs only, and also conducted research on the relationship with social networks. For the study, a survey was conducted using a parallel survey method using online mobile surveys and self-report questionnaires from 150 entrepreneurs of small and medium-sized enterprises. The results of the study showed that 'overconfidence' and 'illusion of control', among the independent variables of entrepreneurs' cognitive biases, had a statistically significant positive(+) effect on business opportunity evaluation. In addition, it was confirmed that the moderating variable, social network, moderates the effect of overconfidence on business opportunity evaluation. This study showed that entrepreneurs' cognitive biases play a role in the process of evaluating and selecting new business opportunities, and that social networks play a role in moderating the structural relationship between entrepreneurs' cognitive biases and business opportunity evaluation. This study is expected to be of great help not only to entrepreneurs, but also to entrepreneur education and policy making, by showing how entrepreneurs can use cognitive biases in a positive way and the influence of social networks.

  • PDF