• Title/Summary/Keyword: One-step synthesis

Search Result 215, Processing Time 0.023 seconds

Synthesis and Luminescence Properties of Sr/SmSi5N8:Eu2+ Phosphor for White Light-Emitting-Diode

  • Luong, Van Duong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.192-197
    • /
    • 2014
  • Red-emitting nitride phosphors recently attracted considerable attention because of their high thermal stability and high color rendering index properties. For excellent phosphor of white light-emitting-diode, ternary nitride phosphor of $Sr/SmSi_5N_8:Eu^{2+}$ with different $Eu^{2+}$ ion concentration were synthesized by solid state reaction method. In this work, red-emitting nitride $Sr/SmSi_5N_8:Eu^{2+}$ phosphor was successfully synthesized by using multi-step high frequency induction heat treatment. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Sr/SmSi_5N_8:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Sr/SmSi_5N_8:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 300 - 550 nm, namely from UV to visible area with distinct enhanced emission peaks. With an increase of $Eu^{2+}$ ion concentration, the peak position of emission in spectra was red-shifted from 613 to 671 nm. After via multi-step heat treatment, prepared phosphor showed excellent luminescence properties, such as high emission intensity and low thermal quenching, better than commercial phosphor of $Y_3Al_5O_{12}:Ce^{3+}$. Using $Eu_2O_3$ as a raw material for $Eu^{2+}$ dopant with nitrogen gas flowing instead of using commercial EuN chemical for $Sr/SmSi_5N_8:Eu^{2+}$ synthesis is one of characteristic of this work.

Synthesis of Dense $WSi_2\;and\;WSi_2-xvol.%SiC$ composites by High- Frequency Induction Combustion and Its Mechanical Properties

  • Oh Dong-Young;Kim Hwan-Cheol;Yoon Jin-Kook;Shon In-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.94-95
    • /
    • 2004
  • Using the high-frequency induction heated combustion method, the simultaneous synthesis and densification of $WSi_2-xvol.%SiC$ (x=0, 10, 20, 30) composites was accomplished using elemental powders of W, Si and C. A complete synthesis and densification of the materials was achieved in one step within a duration of 2 min. The relative density of the composite was up to 97% for the applied pressure of 60MPa and the induced current. The average grain size of $WSi_2$ are 6.9, 6.1, and $5.0{\mu}m$, respectively. The hardness and the fracture toughness increases with increasing SiC content. The maximum values for the hardness and fracture toughness are $1840kg/mm^2\;and\;5.1MPa{\cdot}m^{1/2}\;at\;WSi_2-30vol.%SiC$.

  • PDF

Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts

  • Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • We report the facile synthesis of graphene-$CdLa_2S_4$ composite through a facile solvothermal method at low temperature. The as-prepared products were characterized by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and BET analysis, revealing the uniform covering of the graphene nanosheet with $CdLa_2S_4$ nanocrystals. The as-prepared samples show a higher efficiency for the photocatalytic degradation of typical MB dye compared with P25 and $CdLa_2S_4$ bulk nanoparticles. The enhancement of visible-light-responsive photocatalytic properties by decolorization of Rh.B dye may be attributed to the following causes. Firstly, graphene nanosheet is capable of accepting, transporting and storing electrons, and thus retarding or hindering the recombination of the electrons with the holes remaining on the excited $CdLa_2S_4$ nanoparticles. Secondly, graphene nanosheet can increase the adsorption of pollutants. The final cause is that their extended light absorption range. This work not only offers a simple way to synthesize graphene-based composites via a one-step process at low temperature but also a path to obtain efficient functional materials for environmental purification and other applications.

Study on the Condensation Reaction of Alkyl Glycidyl Ethers and Fatty Acids (알킬 글리시딜에테르와 지방산의 축합반응 연구)

  • Kim, Ji-Hyun;Hwang, Hyun Ah;Lee, Young-Seak;Lee, Byung Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-420
    • /
    • 2012
  • A convenient procedure for the synthesis of fatty acid diesters was studied. Long chain diesters have been used as biolubricant and transformer oils. The series of octyl, dodecyl, hexadecyl, octadecyl, and octadec-9-enyl glycidyl ether were used to synthesize those diesters. Alkyl glycidyl ethers were reacted with fatty acid such as oleic acid and octanoic acid, and octanoic acid. The one-step / two-step reactions were compared during the condensation reaction. The products were confirmed by $^{1}H-NMR$, FT-IR, and HR/MS spectra. The yield of the product 1-O-acyl-2-O, 3-O-dioctadec-9-enoylglycerol was 55~60%.

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.379-383
    • /
    • 2011
  • This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

The role of percutaneous neurolysis in lumbar disc herniation: systematic review and meta-analysis

  • Manchikanti, Laxmaiah;Knezevic, Emilija;Knezevic, Nebojsa Nick;Sanapati, Mahendra R.;Kaye, Alan D.;Thota, Srinivasa;Hirsch, Joshua A.
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.346-368
    • /
    • 2021
  • Background: Recalcitrant disc herniation may result in chronic lumbar radiculopathy or sciatica. Fluoroscopically directed epidural injections and other conservative modalities may provide inadequate improvement in some patients. In these cases, percutaneous neurolysis with targeted delivery of medications is often the next step in pain management. Methods: An evidence-based system of methodologic assessment, namely, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used. Multiple databases were searched from 1966 to January 2021. Principles of the best evidence synthesis were incorporated into qualitative evidence synthesis. The primary outcome measure was the proportion of patients with significant pain relief and functional improvement (≥ 50%). Duration of relief was categorized as short-term (< 6 months) and long-term (≥ 6 months). Results: This assessment identified one high-quality randomized controlled trial (RCT) and 5 moderate-quality non-randomized studies with an application of percutaneous neurolysis in disc herniation. Overall, the results were positive, with level II evidence. Conclusions: Based on the present systematic review, with one RCT and 5 non-randomized studies, the evidence level is II for percutaneous neurolysis in managing lumbar disc herniation.

Direct Synthesis of Dimethyl Ether from Synthesis Gas (합성가스로부터 디메틸에테르 직접 합성)

  • Hahm, Hyun-Sik;Kim, Song-Hyoung;Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Dimethyl ether(DME) was synthesized from synthesis gas by a one-step process in which a hybrid catalyst was used. The hybrid catalyst consisted of Cu-ZnO-$Al_2O_3$ for the methanol synthesis reaction and aluminum phosphate or $H_3PO_4$-modified $\gamma$-alumina for the methanol dehydration reaction. The prepared catalysts were characterized by XRD, BET, SEM, FT-IR and $NH_3$-TPD. From the XRD analysis, it was verified that the aluminum phosphate was successfully synthesized. The specific surface areas of the synthesized aluminum phosphates were varied with the ratio of P/Al. The hybrid catalyst in which P/Al ratio of the aluminum phosphate was 1.2 showed the highest CO conversion of 55% and DME selectivity of 70%. There was no remarkable decrease in catalytic activity with the phosphoric acid treatment of $\gamma$-alumina. However, when treated with concentrated phosphoric acid(85%), the catalytic activity and DME selectivity decreased.

  • PDF

Synthesis of Modified Polyesters Containing Triphosphorus for Flame-Retardant Coatings (난연도료용 트리포스포러스 함유 변성폴리에스테르의 합성)

  • Park, Hong-Soo;Yoo, Gyu-Yeol;Kim, Ji-Hyun;Kim, Young-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.287-295
    • /
    • 2007
  • Three phosphorus functional groups were introduced in one structural unit of polymer backbone to enhance the flame retardancy of PU coatings. In the first step, we synthesized tetramethylene bis(orthophosphate) (TBOP) that contained two phosphorus functional groups in one structural unit. In the next step, we synthesized modified polyesters (ATBTP-10C, -20C, -30C) that contained triphosphorus group using TBOP, 1,4-butanediol, trimethylolpropane, adipic acid, and another functional monomer, phenylphosphonic acid (PPA). The amount of PPA in ATBTPs was adjusted from 10 wt% to 30 wt%. The structure and characteristics of ATBTPs were examined using FT-IR, NMR, GPC, and TGA analysis. From the thermo-behavior test of diphosphorus modified polyester (ATBT) and ATBTPs, the afterglow of ATBT, ATBTP-10C, ATBTP-20C, and ATBTP-30C were 24.7, 27.1, 29.0, and 31.7%, respectively. It was found from this result that the afterglow increased with the amount of PPA component.

Kinetically Controlled Growth of Gold Nanoplates and Nanorods via a One-Step Seed-Mediated Method

  • Hong, Soonchang;Acapulco, Jesus A.I. Jr.;Jang, Hee-Jeong;Kulkarni, Akshay S.;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1737-1742
    • /
    • 2014
  • In this research, we further developed the one-step seed mediated method to synthesize gold nanoparticles (GNPs) and control their resulting shapes to obtain hexagonal, triangular, rod-shaped, and spherical gold nanostructures. Our method reveals that the reaction kinetics of formation of GNPs with different shapes can be controlled by the rate of addition of ascorbic acid, because this is the critical factor that dictates the energy barrier that needs to be overcome. This in turn affects the growth mechanism process, which involves the adsorption of growth species to gold nanoseeds. There were also observable trends in the dimensions of the GNPs according to different rates of addition of ascorbic acid. We performed further analyses to investigate and confirm the characteristics of the synthesized GNPs.

One-Step Enzymatic Synthesis of Blue Pigments from Geniposide for Fabric Dyeing

  • Cho, Y.J.;Kim, S.Y.;Kim, J.;Choe, E.K.;Kim, S.I.;Shin, H.J.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • In this study, we describe a one-step chemoenzymatic reaction for the production of natural blue pigments, in which the geniposide from Gardenia extracts is transformed by glycosidases to genipin. Genipin is then allowed to react with amino acids, thereby generating a natural blue pigment. The ${\beta}-glycosidases$, most notably Isolase (a variant of ${\beta}-glucanase$), recombinant ${\beta}-glycosidases$, Cellulase T, and amylases, were shown to hydrolyze geniposide to produce the desired pigments, whereas the ${\alpha}-glycosidases$ did not. Among the 20 tested amino acids, glycine and tyrosine were associated with the highest dye production yields. The optimal molar ratio of geniposide to glycine, two reactants relevant to pigment production, was unity The natural blue pigments produced in this study were used to dye cotton, silk, and wool. The color yields of the pigments were determined to be significantly higher than those of other natural dyes. Furthermore, the color fastness properties of these dyes were fairly good, even in the absence of mordant.