Browse > Article
http://dx.doi.org/10.4191/kcers.2011.48.5.379

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery  

Lee, Hyun-Wook (Department of Materials Science and Engineering, KAIST)
Muralidharan, P. (Department of Materials Science and Engineering, KAIST)
Kim, Do-Kyung (Department of Materials Science and Engineering, KAIST)
Publication Information
Abstract
This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.
Keywords
Energy storage; Lithium ion battery; Lithium manganese oxide; Nanowire; Nanorod;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Y. Song and M. Shon, "Variations of the Electrochemical Properties of $LiMn_2O_4$ with the Calcining Temperature," J. Kor. Ceram. Soc., 39 [6] 523-27 (2002).   과학기술학회마을   DOI
2 M. J. Ji, E. K. Kim, Y. T. Ahn, and B. H. Choi, "Crystallinity and Battery Properties of Lithium Manganese Oxide Spinel with Lithium Titanium Oxide Spinel Coating Layer on Its Surface," J. Kor. Ceram. Soc., 47 [6] 633-37 (2010).   과학기술학회마을   DOI
3 X. Wang and Y. Li, "Selected-Control Hydrothermal Synthesis of ${\alpha}-$ and ${\beta}-MnO_2$ Single Crystal Nanowires" J. Am. Chem. Soc., 124 [12] 2880-81 (2002).   DOI
4 H. Fang, L. Li, Y. Yang, G. Yan, and G. Li, "Low-temperature Synthesis of Highly Crystallized $LiMn_2O_4$ from Alpha Manganese Dioxide Nanorods," J. Power Sources, 184 [2] 494-97 (2008).   DOI
5 W. I. F. David, M. M. Thackeray, P. G. Bruce, and J. B. Goodenough, "Lithium Insertion into ${\beta}-MnO_2$ and the Rutilespinel Transformation," Mater. Res. Bull., 19 [1] 99-106 (1984).   DOI
6 J. Y. Song, Y. Y. Wang, and C. C. Wan, "Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77 [2] 183-97 (1999).   DOI
7 D. K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, and Y. Cui, "Spinel $LiMn_2O_4$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett., 8 [11] 3948-52 (2008).   DOI
8 H.-W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, "Ultrathin Spinel $LiMn_2O_4$ Nanowires as High Power Cathode Materials for Li-Ion Batteries," Nano Lett., 10 [10] 3852-56 (2010).   DOI
9 C. J. Curtis, J. Wang, and D. L. Schulz, "Preparation and Characterization of $LiMn_2O_4$ Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries," J. Electrochem. Soc., 151 [4] A590-98 (2004).   DOI
10 S. Nieto, S. B. Majumder, and R. S. Katiyar, "Improvement of the Cycleability of Nano-crystalline Lithium Manganate Cathodes by Cation Co-doping," J. Power Sources, 136 [1] 88-98 (2004).   DOI
11 Y.-S. Han, J.-T. Son, H.-G. Kim, and H.-T. Jung, "Combustion Synthesis of $LiMn_2O_4$ with Citric Acid and the Effect of Postheat Treatment," J. Kor. Ceram. Soc., 38 [4] 301-7 (2001).   과학기술학회마을
12 N. Li, C. J. Patrissi, G. Che, and C. R. Martin, "Rate Capabilities of Nanostructured $LiMn_2O_4$ Electrodes in Aqueous Electrolyte," J. Electrochem. Soc., 147 [6] 2044-49 (2000).   DOI
13 A. R. Naghash and J. Y. Lee, "Lithium Nickel Oxyfluoride $(Li_{1−z}Ni_{1+z}F_yO_{2−y})$ and Lithium Magnesium Nickel Oxide $(Li_{1−z}(Mg_xNi_{1−x})(_{1+z})O_2)$ Cathodes for Lithium Rechargeable Batteries II. Electrochemical Investigations," Electrochim. Acta, 46 [15] 2293-304 (2001).   DOI
14 J. Cabana, T. Valdes-Solis, M. R. Palacín, J. Oro-Sole, A. Fuertes, G. Marban, and A. B. Fuertes, "Enhanced High Rate Performance of $LiMn_2O_4$ Spinel Nanoparticles Synthesized by a Hardtemplate Route," J. Power Sources, 166 [2] 492-98 (2007).   DOI
15 S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002).   DOI
16 V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, and Y. Piffard, "$LiMBO_3$ (M = Mn, Fe, Co): Synthesis, Crystal Structure and Lithium Deinsertion/insertion Properties," Solid State Ionics, 139 [1-2] 37-46 (2001).   DOI   ScienceOn
17 S. H. Park, Y. K. Sun, K. S. Park, K. S. Nahm, Y. S. Lee, and M. Yoshio, "Synthesis and Electrochemical Properties of Lithium Nickel Oxysulfide $(LiNiS_yO_{2−y})$ Material for Lithium Secondary Batteries," Electrochim. Acta, 47 [11] 1721-26 (2002).   DOI
18 A. D. Tevar and J. F. Whitacre, "Relating Synthesis Conditions and Electrochemical Performance for the Sodium Intercalation Compound $Na_4Mn_9O_{18}$ in Aqueous Electrolyte," J. Electrochem. Soc., 157 [7] A870-75 (2010).   DOI
19 S. Komaba, C. Takei, T. Nakayama, A. Ogata, and N. Yabuuchi. "Electrochemical Intercalation Activity of Layered $NaCrO_2$ vs. $LiCrO_2$," Electrochem. Commun., 12 [3] 355-58 (2010).   DOI
20 R. Ruffo, C. Wessells, R. A. Huggins, and Y. Cui, "Electrochemical Behavior of $LiCoO_2$ as Aqueous Lithium-ion Battery Electrodes," Electrochem. Commun., 11 [2] 247-49 (2009).   DOI
21 M. Galinski, A. Lewandowski, and I. Stepniak, "Ionic Liquids as Electrolytes," Electrochim. Acta, 51 [26] 5567-80 (2006).   DOI
22 J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 [6861] 359-67 (2001).   DOI
23 M. S. Whittingham, "Lithium Batteries and Cathode Materials," Chem. Rev., 104 [10] 4271-301 (2004).   DOI
24 B. L. Ellis, K. T. Lee, and L. F. Nazar, "Positive Electrode Materials for Li-Ion and Li-Batteries," Chem. Mater., 22 [3] 691-714 (2010).   DOI   ScienceOn
25 C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High Performance Lithium Battery Anodes Using Silicon Nanowires," Nature Nanotech., 3 [1] 31-5 (2008).   DOI
26 S.-W. Kim, H.-W. Lee, P. Muralidharan, D.-H. Seo, W.-S. Yoon, D. K. Kim, and K. Kang, "Electrochemical Performance and ex situ Analysis of $ZnMn_2O_4$ Nanowires as Anode Materials for Lithium Rechargeable Batteries," Nano Res., 4 [5] 505-10 (2011).   DOI
27 Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, "High-energy Cathode Material for Long-life and Safe Lithium Batteries," Nat. Mater., 8 [4] 320-24 (2009).   DOI
28 B.-H. Choi, D.-J. Lee, M.-J. Ji, Y.-J. Kwon, and S.-T. Park, "Study of the Electrochemical Properties of $Li_4Ti_5O_{12}$ Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries," J. Kor. Ceram. Soc., 47 [6] 638-42 (2010).   과학기술학회마을   DOI   ScienceOn