• Title/Summary/Keyword: One-equation model

Search Result 1,481, Processing Time 0.029 seconds

Analysis of Empirical Constant of Eddy Viscosity by Zero- and One-Equation Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Kim, Tae Yun;Lee, Moon Ock;Hwang, Sung Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.323-333
    • /
    • 2014
  • In this paper, the wakes behind a square cylinder were simulated using two kinds of different turbulence models for the eddy viscosity concept such as the zero- and the one-equation model in which the former is the mixing length model and the latter is the k-equation model. For comparison between numerical and analytical solutions, we employed three skill assessments: the correlation coefficient(r) for the similarity of the wake shape, the error of maximum velocity difference(EMVD) for the accuracy of wake velocity and the ratio of drag coefficient(RDC) for the pressure distribution around the structure. On the basis of the numerical results, the feasibility of each model for wake simulation was discussed and a suitable value for the empirical constant was suggested in these turbulence models. The zero-equation model, known as the simplest turbulence model, overestimated the EMVD and its absolute mean error(AME) for r, EMVD and RDC was ranging from 20.3 % to 56.3 % for all test. But the AME by the one-equation model was ranging from 3.4 % to 19.9 %. The predicted values of the one-equation model substantially agreed with the analytical solutions at the empirical mixing length scale $L=0.6b_{1/2}$ with the AME of 3.4 %. Therefore it was concluded that the one-equation model was suitable for the wake simulation behind a square cylinder when the empirical constant for eddy viscosity would be properly chosen.

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

Behavior of Gaseous Volatile Organic Compounds Considered by Density-Dependent Gas Advection (밀도차에 의해 발생하는 이송을 고려한 휘발성 유기화합물 가스의 거동)

  • 이창수;이영화
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1321-1326
    • /
    • 2002
  • A numerical model is investigated to predict a behavior of the gaseous volatile organic compounds and a subsurface contamination caused by them in the unsaturated zone. Two dimensional advective-dispersion equation caused by a density difference and two dimensional diffusion equation are computed by a finite difference method in the numerical model. A laboratory experiment is also carried out to compare the results of the numerical model. The dimensions of the experimental plume are 1.2m in length, 0.5m in height, and 0.05m in thickness. In comparing the result of 2 methods used in the numerical model with the one of the experiment respectively, the one of the advective-dispersion equation shows better than the one the diffusion equation.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

ON THE ADAPTED PARTIAL DIFFERENTIAL EQUATION FOR GENERAL DIPLOID MODEL OF SELECTION AT A SINGLE LOCUS

  • Won Choi
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.213-218
    • /
    • 2024
  • Assume that at a certain locus there are three genotypes and that for every one progeny produced by an IAIA homozygote, the heterozygote IAIB produces. W. Choi found the adapted partial differential equations for the density and operator of the frequency for one gene and applied this adapted partial differential equations to several diploid model. Also, he found adapted partial differential equations for the diploid model against recessive homozygotes and in case that the alley frequency occurs after one generation of selection when there is no dominance. (see. [1, 2]). In this paper, we find the adapted partial equations for the model of selection against heterozygotes and in case that the allele frequency changes after one generation of selection when there is overdominance. Finally, we shall find the partial differential equation of general type of selection at diploid model and it also shall apply to actual examples. This is a very meaningful result in that it can be applied in any model.

Numerical study of CEDS scheme for turbulent flow (난류 유동장에 대한 CFDS 기법의 수치적 연구)

  • Moon Seong Mok;Kim Chongam;Rho Oh Hyun;Hong Seung Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.23-26
    • /
    • 2002
  • An evaluation of one algebraic and two one-equation eddy viscosity-transport turbulence closure models as implemented to the CFDS(Characteristic Flux Difference Splitting) scheme is presented for the efficient computation of the turbulent flow. Comparisons of Baldwin-Lomax model as algebraic turbulence model and Baldwin-Barth and Spalart-Allmaras model as one-equation turbulence model are presented for three test cases for 3-dimensional flow. The numerical result of the CFDS schem is examined through comparison with the experimental data.

  • PDF

Estimation of a Structural Equation Model Including Brand Choice Probabilities (브랜드 선택확률 분석을 위한 구조방정식 모형)

  • Lee, Sang-Ho;Lee, Hye-Seon;Kim, Yun-Dae;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The partial least squares (PLS) method is popularly used for estimating the structural equation model, but the existing algorithm may not be directly implemented when probabilities are involved in some constructs or manifest variables. We propose a structural equation model including the brand choice as one construct having brand choice probabilities as its manifest variables. Then, we develop a PLS-based algorithm for the structural equation model by utilizing the multinomial logit model. A case is introduced as an application and simulation studies are performed to validate the proposed algorithm.

Turbulent flow fields analysis using CFDS scheme (CFDS기법을 이용한 난류 유동장 해석)

  • Moon S. M.;Lee J. S.;Kim C.;Rho O. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.51-59
    • /
    • 2001
  • An evaluation of one zero-equation and two one-equation eddy viscosity-transport turbulence closure models as implemented CFDS(Characteristic Flux Difference Splitting ) code is presented herein. Comparisons of Baldwin-Lomax model as zero-equation and Baldwin-Barth and Spalart-Allmaras model as one-equation are presented for three test cases, first inlvolving the 3 dimensional supersonic flow at M=1.98 over tangent ogive cylinder, second involving the 2 dimensional transonic flow at M=0.79 over RAE 2822 airfoil, third involving the 3 dimensional transonic flow at M=0.84 over ONERA M6 wing. The numerical results of CFDS code will also examined through direct comparison with experimental data.

  • PDF

TRAVELING WAVE SOLUTIONS FOR A SHALLOW WATER MODEL

  • Jung, Soyeun
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.649-654
    • /
    • 2017
  • In this note, we seek traveling wave solutions of a shallow water model in a one dimensional space by a simple but rigorous calculation. From the profile equation of traveling wave solutions, we need to investigate the phase portrait of a one dimensional ordinary differential equation $\tilde{u}^{\prime}=F(\tilde{u})$ connecting two end states of the traveling wave solution.