• 제목/요약/키워드: One-dimensional simulations

검색결과 299건 처리시간 0.031초

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon;Lee, Eunjung;Lee, Young-Ran
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.835-847
    • /
    • 2021
  • We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.

전열포 플라즈마 생성장치의 영차원 해석모델 (Zero-Dimensional Modeling of Plasma Generator in Electrothermal Gun)

  • 김경진;박중윤
    • 한국추진공학회지
    • /
    • 제19권6호
    • /
    • pp.1-9
    • /
    • 2015
  • 본 연구에서는 전열포의 플라즈마 발생장치에서 외부회로로부터 가해지는 펄스형 전기에너지에 의한 플라즈마 발생현상을 대상으로 영차원적 모델링 및 전산해석을 수행하였다. 전극 사이의 보어 내 플라즈마의 균일 온도 가정을 채용하여 질량 및 에너지 방정식을 간소화하였으며, 보어 및 전극 표면 상의 용발 모델 및 플라즈마 물성치 계산모델과 연계하였다. 해석결과는 1차원적 해석모델과 비교하여 상당히 일치함을 보여 영차원적 해석결과의 유효성을 확인할 수 있다.

An attempt to reduce the number of training in the artificial neural network

  • Omae, Akihiro;Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1256-1258
    • /
    • 1990
  • A large number of trainings are requested for the artificial neural network using the backpropagation algorithm. It is shown that one dimensional search technique is effective to reduce the number of trainings through some numerical simulations.

  • PDF

봄철 강릉지역에서 발생하는 강풍에 대한 연구 (Severe Downslope Windstorms of Gangneung in the Springtime)

  • 장욱;전혜영
    • 대기
    • /
    • 제18권3호
    • /
    • pp.207-224
    • /
    • 2008
  • Severe downslope windstorms observed at Gangneung, Korea in the springtime during the last 30 years are studied to understand their generation mechanisms. 92 severe wind cases are selected for which the maximum instantaneous wind speeds exceed two standard deviation of total mean plus ($18.7ms^{-1}$). They are categorized into the three mechanisms (hydraulic jump, partial reflection, and critical-level reflection) proposed in previous studies based on the flow condition, which is calculated using the wind and temperature profile observed at one upstream rawinsonde station, Osan. Among the three, partial reflection is found to be the most frequent mechanism for the last 30 years (1976 - 2005). To understand the role of inversion in generating severe downslope windstorms, horizontal velocity perturbation was calculated analytically for the atmosphere with an inversion layer. It turned out that the intensity of downslope wind was increased by inversion layer of specific heights, which are well matched with the observations. For better understanding the generation mechanisms, two-dimensional numerical simulations are conducted for the 92 severe wind cases using the ARPS model. In most simulations, surface wind speed exceeds the value of the severe-wind criterion, and each simulated case can be explained by its own generation mechanism. However, in most simulations, the simulated surface wind speed is larger than the observed, due to ignoring the flow-splitting effect in the two-dimensional framework.

액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구 (A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems)

  • 곽건희;고요한;이수원;이진우;백동현;정두환;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.

Dislocations as native nanostructures - electronic properties

  • Reiche, Manfred;Kittler, Martin;Uebensee, Hartmut;Pippel, Eckhard;Hopfe, Sigrid
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.

3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구 (A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation)

  • 하영록;김용직
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

다층 예비성형체에 대한 삼차원 충진해석 (Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding)

  • 양매;송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

대기혼합층 모사를 위한 1차원 수치모형 : 득량만에서의 적용 (One-Dimensional Model for Simulations of Atmospheric Mixed Layer : Application to Dukyang Bay Area)

  • 김유근;문승의;안중배
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.425-435
    • /
    • 1997
  • One-dimensional thermodynamic mixed layer model to stimulate variations of meteorological variables wish the planetary boundary layer has been developed In this study. This model consists of 2 prognostic equations, which can predict the variations of potential temperature and mixing ratio and several diagnostic equations. Physics within the surface and mixed layers has been considered seperately in the model. For the variations of the model, Its result has been analysed and compared with observated data over Ole Dukyang Bay for one day, July 23, 1992. The simulated height of mixed layer is comparable to the observation and the variations of temperature and mixing ratio in the mixed layer are also reasonably simulated. Those Imply that the model responds appropriately with given boundary conditions In sprite of Its simplilfied assumptions applied to the model and insufficient boundary and Initial conditions.

  • PDF

2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구 (Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum)

  • 서강면;강문성
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.