Browse > Article
http://dx.doi.org/10.12989/anr.2014.2.1.001

Dislocations as native nanostructures - electronic properties  

Reiche, Manfred (Max Planck Institute of Microstructure Physics)
Kittler, Martin (IHP Microelectronics)
Uebensee, Hartmut (CIS Research Institute of Microsensorics and Photovoltaics)
Pippel, Eckhard (Max Planck Institute of Microstructure Physics)
Hopfe, Sigrid (Max Planck Institute of Microstructure Physics)
Publication Information
Advances in nano research / v.2, no.1, 2014 , pp. 1-14 More about this Journal
Abstract
Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.
Keywords
dislocations; one-dimensional nanostructures; electronic properties; MOSFETs; semiconductor wafer bonding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alexander, H. (1986), "Dislocations in covalent crystals", Dislocat. Solid., 7, 113-234.
2 Alexander, H. and Teichler, H. (1991), Dislocations, Electronic Structure and Properties of Semiconductors,249-319.
3 Amelinckx, S. (1982), "Dislocations in particular structures", Dislocat. Solid., 2, 67-460.
4 Aubert, J.J. and Bacmann, J.J. (1987), "Czochralski growth of silicon bicrystals", Rev. Phys. Appl., 22(7),515-518.   DOI
5 Bengtsson, S., Andersson, G.I., Andersson, M.O. and Engstrom, O. (1992), "The bonded unipolar siliconsilicon junction", J. Appl. Phys., 72(1), 124-140.   DOI
6 Bollmann, W. (1970), Crystal Defects and Crystalline Interfaces, Springer, New York.
7 Gomez, A. and Hirsch, P.B. (1977), "On the mobility of dislocations in germanium and silicon", Phil. Mag.,36(1), 169-179.   DOI
8 Bulatov, V.V. and Cai, W. (2006), Computer Simulations of Dislocations, Oxford University Press, Oxford.
9 Duesbery, M.S. and Joas, B. (1996), "Dislocation motion in silicon: the shuffle-glide controversy", Phil. Mag. Lett., 74(4), 253-258.   DOI
10 Hirth, J.P. and Lothe, J. (1982), Theory of Dislocations, Wiley Interscience, New York.
11 Hornstra, J. (1958), "Dislocations in the diamond lattice", J. Phys. Chem. Solids, 5, 129-141.   DOI
12 Ishikawa, Y., Yamamoto, C. and Tabe, M. (2006), "Single-electron tunneling in a silicon-on-insulator layer embedding an artificial dislocation network", Appl. Phys. Lett., 88, 073112.   DOI
13 Kittler, M., Yu, X., Mchedlidze, T., Arguirov, T., Vyvenko, O.F., Seifert, W., Reiche, M., Wilhelm, T., Seibt, M., Voss, O., Wolff, A. and Fritzsche, W. (2007), "Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics", Small, 3(6), 964-973.   DOI
14 Kittler, M. and Reiche, M. (2009), "Dislocations as active components in novel silicon devices", Adv. Eng. Mater., 11(4), 249-258.   DOI
15 Kittler, M., Reiche, M., Arguirov, T., Mchedlidze, T., Seifert, W., Vyvenko, O.F., Wilhelm, T. and Yu, X. (2008), "Dislocations in silicon as a tool to be used in optics, electronics and biology", Solid State Phenom., 131-133, 289-292.   DOI
16 Kittler, M., Reiche, M., Krause, M. and Ubensee, H. (2013), "Carrier transport on dislocations", Proceedings of the International Conference on Defects in Semiconductors, Bologna.
17 Liu, Z.H., Hu, C., Huang, J.H., Chan, T.Y., Jeng, M.C., Ko, P.K. and Cheng, Y.C. (1993), "Threshold voltage model for deep-submicrometer MOSFETs", IEEE Trans. Electr. Dev., 40, 86-94.   DOI   ScienceOn
18 Kveder, V. and Kittler, M. (2008), "Dislocations in silicon and D-band luminescence for infrared light emitters", Mat. Sci. Forum, 590, 29-56.   DOI
19 Kveder, V., Kittler, M. and Schroter, W. (2001), "Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior", Phys. Rev. B, 63, 115208.   DOI
20 Ravi, K.V. (1981), Imperfections and Impurities in Semiconductor Silicon, Wiley, New York.
21 Ray, I.L.F. and Cockayne, D.J.H. (1971), "The dissociation of dislocations in silicon", Proc. R. Soc. London, A, 325, 543-554.   DOI
22 Schroter, W. and Cerva, H. (2002), "Interaction of point defects with dislocations in silicon and germanium: electrical and optical effects", Solid State Phenom., 85-86, 67-144.   DOI
23 Reiche, M., Hiller, E. and Stolze, D. (2002), "New substrates for MEMS", Proceedings of the first IEEE International Conference on Sensors, Orlando, Fl.
24 Reiche, M. and Kittler, M. (2011), "Structure and Properties of Dislocations in Silicon", Ed. S. Basu, Crystalline Silicon - Properties and Uses.
25 Reiche, M. and Kittler, M. (2012), "Characterization of dislocation-based nanotransistors", Proceedings of the 16th International Workshop Phys. Semicond. Devices, Eds. Y.N. Mohapatra and B. Mazhari, Kanpur, India.
26 Reiche, M., Kittler, M., Buca, D., Hahnel, A., Zhao, Q.T., Mantl, S. and Gosele, U. (2010), "Dislocationbased Si-nanodevices", Jpn. J. Appl. Phys., 49, 04DJ02.
27 Reiche, M., Kittler, M., Krause, M., and Ubensee, H. (2013), "Electrons on dislocations", Phys. Stat. Sol., 10(1), 40-43.   DOI
28 Reiche, M., Kittler, M., Scholz, R., Hahnel, A., and Arguirov, T. (2011), "Structure and properties of dislocations in interfaces of bonded silicon wafers", J. Phys. Conf. Ser., 281, 012017.   DOI
29 Seitz, F. (1952), "The plasticity of silicon and germanium", Phys. Rev., 88(1), 722-724.   DOI
30 Thibault-Desseaux, J., Putaux, J.L., Bourret, A. and Kirchner, H.O.K. (1989), "Dislocations stopped by the= 9(122) grain boundary in Si. An HREM study of thermal activation", J. Phys. France, 50, 2525-2540.   DOI
31 Tong, Q.Y., and Gosele, U. (1999), Semiconductor Wafer Bonding, Wiley, New York.
32 Labusch, R. and Schroter, W. (1980), "Electrical properties of dislocations in semiconductors", Dislocat. Solid., 5, 127-191.
33 Yu, X., Arguirov, T., Kittler, M., Seifert, W., Ratzke, M. and Reiche, M. (2006), "Properties of dislocation networks formed by Si wafer direct bonding", Mater. Sci. Semicond. Proc., 9, 96-101.   DOI
34 Rauly, E., Potavin, O., Balestra, F. and Raynaud, C. (1999), "On the subthreshold swing and short channel effects in singl and double gate deep submicron SOI-MOSFETs", Solid State Electron., 43, 2033-2037.   DOI
35 Marklund, S. (1979), "Electron states associated with partial dislocations in silicon", Phys. stat. Sol., 92, 83-89.   DOI