• Title/Summary/Keyword: One-dimensional heat transfer model

Search Result 146, Processing Time 0.023 seconds

Investigation of Optimal Construction Procedures for Concrete Underpass Structures Considering Heat of Hydration (수화열을 고려한 콘크리트 지하차도 적정 시공법 분석)

  • An, Zu-Og;Kim, Seong-Min;Kim, Dong-Ryun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • This paper describes the methods to propose the optimal material properties and construction steps that prevent cracks due to the thermal stresses induced by the hydration heat under the construction of the concrete underpass structures. To achieve the goal of this study, the heat transfer theories were employed and the three-dimensional finite element model of the underpass structure was developed and used for the structural analyses. If the volume of the concrete member that is placed at one time is significantly large, the member is assumed to be the mass concrete and is easy to induce cracks. In order to minimize the cracks during the construction, two different methods can be utilized: one is to arrange the construction steps optimally and the other is to change the materials to reduce the probability of the crack occurrence. In this study, the analyses were performed by considering the changes in material properties with time, the characteristics of the hydration heat generation for cements and admixtures, the volume of the concrete placement at one time, and the environmental conditions.

  • PDF

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC (SOFC용 고온 적층 단열재의 해석적 고찰)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.

Evaluation of Effective Thermal Conductivity and Thermal Resistance in Ground Heat Exchanger Boreholes (지중 열교환기 보어홀에서의 유효 열전도도 및 열저항 산정)

  • Sohn Byong Hu;Shin Hyun-Joon;Park Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.695-703
    • /
    • 2005
  • The objective of this study is to determine the effective thermal conductivity and thermal resistance values in test boreholes with three different fill materials. To evaluate these heat transfer properties, in-situ tests on four vertical boreholes were conducted by adding a monitored amount of heat to water over various test lengths. Two parameter estimation models, line-source and numerical one-dimensional models, for evaluation of thermal response test data were compared when applied on the same four data sets. Results show that the average thermal conductivity deviation between measured data and these two models is in the range of $3.03\%$ to $4.45\%$. The effect of increasing grout thermal conductivity from 1.34 to 1.82 $W/m^{\circ}C$ resulted in overall increases in effective formation thermal conductivity by $11.1\%$ to $51.9\%$ and reductions in borehole thermal resistance by $11.6\%$ to $26.1\%$.

Performance Modeling of a Pyrotechnically Actuated Pin Puller

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.102-111
    • /
    • 2014
  • An analytical model was developed to understand the physics and predict the functional performance of a pin puller. The formulated model is based on one-dimensional gas dynamics for an ideal gas. Resistive forces against pin shaft movement were measured in quasi-static mechanical tests, the results of which were incorporated into the model. The expansion chamber pressure and the pin shaft displacement were measured from an actual firing test and compared to the model prediction. The gas generation rate was adjusted by a correction factor, and the heat transfer rate was obtained through parametric analysis. The validity of the model is assessed for additional firing tests with different amounts of pyrotechnic charge. This model can provide knowledge on how the pin puller functions, and on which design parameters contribute the most to the actuation of the pin puller. Using this model, we estimate the functional safety factor by comparing the energy generated by the pyrotechnic charge to the energy required to accomplish the function.

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

The Analysis of Normal Zone Propagating Velocity in High Tc Bulk superconductor (벌크형 고온초전도에서의 상전도영역 전파속도 해석)

  • Chu, Yong;Joo, Min-Seok;Kim, Ho-Min;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.184-186
    • /
    • 1996
  • This paper is a study on the analysis of normal zone propagating velocity in high Tc superconductor. Steady-state solution is analyzed based upon the one-dimensional heat transfer equation. This model incorporates the temperature and magnetic field dependent superconductor properties. The analytical results indicate that the propagation velocity is not a linear function of operating current, magnetic field and temperature.

  • PDF

Modeling of Combustion and Heat Transfer in the Iron Ore Sintering Bed (제철 소결기 베드 내 연소 및 열전달 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • Processes in an iron ore sintering bed can characterized as a relatively uniform progress of fuel, cokes combustion and complicated physical change of solid particles. The sintering bed was modelled as an unsteady one-dimensional progress of the fuel layer, containing two phases: solid and gas. Coke added to the raw mix, of which the amount is about 3.5% of the total weight, was assumed to form a single particle with other components. Numerical simulations of the condition in the iron ore sintering bed were performed for various parameters: moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results showed that the influence of these parameters on the bed condition should be carefully evaluated, in order to achieve self-sustaining combustion without high temperature section. The model should be extended to consider the bed structural change and multiple solid phase, which could treat the inerts and fuel particles separately.

  • PDF

Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases (제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF