• Title/Summary/Keyword: One-degree-of-freedom-system

Search Result 221, Processing Time 0.042 seconds

Initial value assumption for Estimation of Structural Dynamic System using Extended Kalman Filtering (구조물의 동특성치 예측을 위한 확장칼만필터기법의 초기치 설정에 관한 연구)

  • Jung, In-Hee;Yang, Won-Jik;Kang, Dae-Eon;Oh, Jong-Sig;Park, Hong-Shin;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.506-509
    • /
    • 2006
  • Extended Kalman Filter iterate the prediction and the filtering based on Initial state for the next time step. EKF method for the estimation of nonlinear parameters of a structural dynamic system is necessary that initial of state vector and error covariance matrix. Because those are unknown exactly, generally selected random values. That occasion observability problem appear because of unknown initial values. In this study, for the estimation of the nonlinear parameters, a simple one degree of Freedom example is carried out by Extended Kalman Filter. And initial value assumption for Parameter Estimation of Dynamic System are developed. The result of analysis is compared with calculated standard values.

  • PDF

Periodic Sampled-Data Control for Fuzzy Systems;Intelligent Digital Redesign Approach

  • Kim, D.W.;Joo, Y.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1492-1495
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed; and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system; but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

Intelligent rehabilitation robotic system for the handicapped and the elderly-KARES (장애인과 노약자를 위한 지능형 재활 로봇 시스템(KARES))

  • 송원경;김종명;윤용산;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1541-1544
    • /
    • 1997
  • The rehailitation robot, one of the service robot, is the important area in the service automation. In the paper, we describe the overall configuration of KARES(KAIST Rehabilitation Engineering System), which is an intellingent rehabilitaion robotic system designed to assist the independent livelihood of the handicapped and the eldrly. KARES consists of the 6 degree of freedom robot arm mounted on a wheelchair, the controller ofr the arm, sensors to perceive environment, and user interface. Basic desired hobs in KARES are gripping the target object and moving it to the user's face for eating, drinking, or cooperation work wiht the mouth. Currently, the manual operation of the arm is available for gripping to target objects. The autonomous functionality will be ginven for the facilities of the human operator.

  • PDF

Model Following Reconfigurable Flight Control System Design Using Direct Adaptive Scheme (직접 적응기법을 이용한 모델추종 재형상 비행제어시스템 설계)

  • 김기석;이금진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • A new reconfigurable model following flight control method based on direct adaptive scheme is presented. Using the timescale separation principle, both the inner-loop and the outer-loop states are controlled simultaneously. For the timescale separation assumption to be satisfied, the inner-loop model dynamics is set to be fast whereas the outer-loop model dynamics is set to be relatively slow. The stability and convergence of the proposed control law is proved by Lyapunov theorem. One of the merits of the proposed reconfigurable controller is that the FDI process and the persistent input excitation are not necessary, which is suitable for the flight control system. To evaluate the reconfiguration performance of the proposed control method, numerical simulation is performed using six degree-of-freedom nonlinear dynamics.

Response spectrum analysis for regular base isolated buildings subjected to near fault ground motions

  • Moussa, Leblouba
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.527-543
    • /
    • 2012
  • This paper presents a response spectrum analysis procedure suitable for base isolated regular buildings subjected to near fault ground motions. This procedure is based on the fact that the isolation system may be treated separately since the superstructure behaves as a rigid body on well selected isolation systems. The base isolated building is decomposed into several single-degree of freedom systems, the first one having the total weight of the building is isolated while the remainder when superposed they replicate approximately the behavior of the superstructure. The response of the isolation system is governed by a response spectrum generated for a single isolated mass. The concept of the procedure and its application for the analysis of base isolated structures is illustrated with an example. The present analysis procedure is shown to be accurate enough for the preliminary design and overcomes the limits of applicability of the conventional linear response spectrum analysis.

LMI-Based Intelligent Digital Redesign for Multirate Sampled-Data Fuzzy Systems

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

The Development of a Balancing Control System for the Anti-Rolling Rail of a Delivery Ship (용달선의 횡 동요를 억제하기 위한 곡선레일의 수평유지장치 개발)

  • Byun, J.H.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • A delivery ship is used to handle the cargo with the crane to/from the ships. The ship is inclined in the direction of a cargo which is hung on a crane. In this case, a arc shaped rail should be in the equilibrium state to get good anti rolling performance. In this study, a device and control algorithm are developed to take accurate and quick equilibrium of the rail. The device is composed of a hinged immovable support and two screw jacks. And the control algorithm demands two controllers. One controller is designed such that the screw jack 1 and 2 follow the position reference signal generated by a tilt sensor. The other controller of two degree of freedom is designed to remove the synchronous error occurred between jack 1 and jack 2. The simulation results show that the desirable control performance is achieved.

  • PDF

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario;Troiano, Giuseppe;Laino, Luigi;Zhurakivska, Khrystyna
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.343-350
    • /
    • 2021
  • PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.

A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System (단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구)

  • Park, Sangki;Cho, Jeong-rae;Cho, Chang-beck;Lee, JinHyuk;Kim, Dong-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.