• Title/Summary/Keyword: One-Slope Model

Search Result 297, Processing Time 0.024 seconds

Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park (SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan;Oh, Hyunjoo;Lee, Choonoh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.106-117
    • /
    • 2021
  • The purpose of this study is prediction of landslide occurrence reflecting the subsurface flow characteristics within the soil layer in the future due to climate change in a large scale watershed. To do this, we considered the infinite slope stability theory to evaluate the landslide occurrence with predicted soil moisture content by SWAT model based on monitored data (rainfall-soil moisture-discharge). The correlation between the SWAT model and the monitoring data was performed using the coefficient of determination (R2) and the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and, an accuracy analysis of landslide prediction was performed using auROC (area under Receiver Operating Curve) analysis. In results comparing with the calculated discharge-soil moisture content by SWAT model vs. actual observation data, R2 was 0.9 and NSE was 0.91 in discharge and, R2 was 0.7 and NSE was 0.79 in soil moisture, respectively. As a result of performing infinite slope stability analysis in the area where landslides occurred in the past based on simulated data (SWAT analysis result of 0.7~0.8), AuROC showed 0.98, indicating that the suggested prediction method was resonable. Based on this, as a result of predicting the characteristics of landslide occurrence by 2050 using climate change scenario (RCP 8.5) data, it was calculated that four landslides could occur with a soil moisture content of more than 75% and rainfall over 250 mm/day during simulation. Although this study needs to be evaluated in various regions because of a case study, it was possible to determine the possibility of prediction through modeling of subsurface flow mechanism, one of the most important attributes in landslide occurrence.

A Study on Interaction between Soil and Nail using SW Model (Strain Wedge Model을 이용한 지반-네일의 상호작용에 대한 연구)

  • 김홍택;강인규;김진홍;전찬우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.153-158
    • /
    • 1999
  • In the design and analysis of soil nailed slope, interaction between soil and nail is one of important problems. In the present analysis approaches for the interactions have developed a elastic analysis approach or a plastic analysis approach. However these approaches are not able to estimate the general interaction between soil and nail. In this study the general interaction between soil and nail using the strain wedge model is proposed. Also results of comparison between the proposed method and full scale test results by Gassler(1976) and large scale experimental results at Oxford University are shown in good agreements.

  • PDF

Estimating and Analysis of Soil Loss from Upland Watershed Using WEPP Model (WEPP 모형을 이용한 밭유역의 토양 유실량 추정 및 분석)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.85-88
    • /
    • 2002
  • This paper presents the result of the Water Erosion Prediction Project(WEPP) watershed scale model's application for prediction of sediment yield from a watershed which is comprised of hillslopes and channels and analyses of the soil loss from hillslopes and channels with crop practice and shape. To evaluate the model's application, the model is applied to a watershed that comprised of six hillslope and one channel, and the result was a good agreement with the observed values. The soil loss from hillslope was increased as the hills lope was under fallow conditions and slope length was longer. The soil loss from the channel was increased at the downstream for the concentration of flow.

  • PDF

The Impact Loads on the Hitch Point of the Tiller-Trailer System (동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력-)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

Analytical Comparison of Time-Dependent Mild-Slope Equations (시간의존 완경사방정식의 이론적 비교)

  • Lee, Chang-Hoon;James T. Kirby
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.389-396
    • /
    • 1994
  • We analyze existing time-dependent mild-slope equations, which were developed by Smith and Sprinks (1975) (or, equivalently, Radder and Dingemans (1985)) and Kubo et al. (1992), in terms of the dispersion relation and energy transport. One-dimensionally in the horizontal direction, we compare the modulation of wave amplitudes for the time-dependent mild-slope equations against the linear Scrodinger equation. In view of the dispersion relation and modulation of wave amplitudes, Smith and Sprinks' model is more accurate in shallower water (kh$\leq$0.2$\pi$) and satisfies the linear Scrodinger equation in very shallow water (kh>0.2$\pi$) and satisfies the linear Scrodinger equation at a point of intermediate water depth (kh=0.3$\pi$). In view of the energy transport, Kubo et al.'s model is more accurate but yields singular solutions at some higher frequency range.

  • PDF

Soil Erosion Assessment Using RS/GIS for Watershed Management in Dukchun River Basin, a Tributary of Namgang and Jinyang Lake

  • Cho Byung Jin;Yu Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.3-12
    • /
    • 2004
  • The need to predict the rate of soil erosion, both under existing conditions and those expected to occur following soil conservation practice, has been led to the development of various models. In this study Morgan model especially developed for field-sized areas on hill slopes was applied to assess the rate of soil erosion using RS/GIS environment in the Dukchun river basin, one of two tributaries flowing into Jinyang lake. In order to run the model, land cover mapping was made by the supervised classification method with Landsat TM satellite image data, the digital soil map was generated from scanning and screen digitizing from the hard copy of soil maps, digital elevation map (DEM) in order to generate the slope map was made by the digital map (DM) produced by National Geographic Information Institute (NGII). Almost all model parameters were generated to the multiple raster data layers, and the map calculation was made by the raster based GIS software, IL WIS which was developed by ITC, the Netherlands. Model results show that the annual soil loss rates are 5.2, 18.4, 30.3, 58.2 and 60.2 ton/ha/year in forest, paddy fields, built-up area, bare soil, and upland fields respectively. The estimated rates seemed to be high under the normal climatic conditions because of exaggerated land slopes due to DEM generation using 100 m contour interval. However, the results were worthwhile to estimate soil loss in hilly areas and the more precise result could be expected when the more accurate slope data is available.

Experimental Investigation of Effects of Sediment Concentration and Bed Slope on Debris Flow Deposition in Culvert (횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구)

  • Kim, Youngil;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.467-474
    • /
    • 2011
  • Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.

Prediction of Wave-Induced Current Using Time-Dependent Wave Model (쌍곡선형 파랑모형을 이용한 해빈류 예측)

  • 김재중;이정만
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.269-280
    • /
    • 1998
  • A Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mixing radiation stresses surface and bottom stresses are considered in our current model. Copeland’s(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda’s(1974) experimental results for the uniform slope coastal region test and Nishimura & Naruyama’s (1985) experimental results and numerical simulation results for the detached breakwater. The results from our wave model and wave model and wave-induced current model show good agreements with the others and also show nonlinear effects around the detached breakwater. The model in this study can be applied in the surf zone considering the friction stresses.

  • PDF

New analytical model for the hoop contribution to the shear capacity of circular reinforced concrete columns

  • Trentadue, Francesco;Quaranta, Giuseppe;Greco, Rita;Marano, Giuseppe Carlo
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • The paper is concerned with the analytical description of a resistance mechanism, not considered in previous models, by which the hoops contribute to the shear capacity of RC columns with circular cross sections. The difference from previous approaches consists in observing that, because of deformation, the hoops change their original shape and, as a consequence, their slope does not match anymore the original one in the neighborhood of a crack. The model involves two parameters only, namely the crack inclination and the hoop strain in the neighborhood of a crack. A closed-form analytical formulation to correlate the average value of the crack width and the hoop strain is also provided. Results obtained using the proposed model have been compared with experimental data, and a satisfactory agreement is found.

Pivot Nonlinearity in Disk Drive Rotary Actuator : Measurement and Modeling (HDD 회전형구동장치의 피봇비선형성 측정 및 모델링)

  • 박재흥;변용규;장흥성;노광춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.419-424
    • /
    • 1996
  • As track density increases, the effects of nonlinearity in pivot bearing of hard disk drive on the servo performance are becoming more important in considering the range of inertia force and the input torque during settling and tracking mode. Recently, an increasing attention is given to more precise experimental observations and modelings of pivot nonlinearity for achieving higher performance of servo control. In this paper, we propose a new model that shows an improved prediction of the pivot nonlinearity than existing preload-plus-two-slope model at matching simulations and experimental results in both time and frequency domains. Experimental measurements are carried out to validate and identify the specific nonlinearity presents in the pivot bearing when its in fine motion. Using the experimental results new model along with the existing one are characterized and compared for relevancies.

  • PDF