• Title/Summary/Keyword: One-Gate

Search Result 807, Processing Time 0.032 seconds

A Study on Parameters for Design of IGBT (IGBT 설계 Parameter 연구)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1943-1950
    • /
    • 2009
  • The development of high voltage Insulated Gate Bipolar Transistor (IGBT) have given new device advantage in the areas where they compete with conventional GTO (Gate Turnoff Thyristor) technology. The IGBT combines the advantages of a power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and a bipolar power transistor. The change of electrical characteristics for IGBT is mainly coming from the change of characteristics of MOSFET at the input gate and the PNP transistors at the output. The gate oxide structure gives the main influence on the changes in the electrical characteristics affected by environments such as radiation and temperature, etc.. The change of threshold voltage, which is one of the important design parameters, is brought by charge trapping at the gate oxide. In this paper, the electrical characteristics are simulated by SPICE simulation, and the parameters are found to design optimized circuits.

  • PDF

Optimal Gate Operation and Forecasting of Innundation Area in the Irrigation Reservoir (관개저수지의 최적수문조작과 침수구역 예측)

  • 문종필;엄민용;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.486-492
    • /
    • 1999
  • One of the purpose of the reservoir operation is minimizing theinnudation area in the downstream reaches during flood period.l To execute the gate operation properly , it requires lots of real-time data such as rainfall, reservoir level, and water level in the downstrea. Gate operation model was developed with the flood discharge obtained from real-time flood forecasting model and the criterion prepared from the past history of gate operation. Water level in the downstream would be increased by the releasing discharge from the spillway and the area of paddy land flooded in a certain detph and time would be estimated usnig GIS map. Gate operation model was applied to the Yedang reservoir, and the flooded area, depth and time in the paddy land was estimaged.

  • PDF

Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model (실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화)

  • Kang, Jung-Ho;Kang, Jin;Park, Young-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).

An experimental study on the discharge characteristics of underflow type floating vertical lift gate at free-flow condition (부력식 연직수문의 자유흐름 상태에서 하단방류 특성에 관한 실험적 연구)

  • Han, Il Yeong;Choi, Heung Sik;Lee, Ji Haeng;Ra, Sung Min
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.405-415
    • /
    • 2018
  • Hydraulic variables such as discharge coefficient, gate opening, and upstream water depth are required to calculate the discharge of vertical lift gate. It is very important for a precise gate design, because it may affect the rest, to predict the behavior of gate opening during operation. In this study, an equation by which gate opening could be predicted with any upstream water depths was derived from the relation between the calculated value from buoyancy theory and measured one from experiment for a floating gate model. Downpull force was the reason for the differences between the calculated and the measured and it was verified using pressure coefficient. Also, the relation of discharge coefficient with gate opening ratios was derived. The derived relations were used for flood routing and it was realized that downpull force effect should be fully taken into account during gate design.

Gate Leakage Current Characteristics of GaAs MESFETs with Different Temperature (GaAs MESFET의 온도변화에 대한 게이트누설전류 특성)

  • Won, Chang-Sub;Hong, Jea-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.24-27
    • /
    • 2003
  • In this paper, We make experiment on two methode for GaAs MESFET with temperature variation. One method, we mesure gate leakage current at open source electrode. another we mesure gate leakage current at short source electrode. The difference of two current has been tested and provide that the existence of another source to Schottky barrier height against the image force lowering effect.

  • PDF

A Study on the contact surface of Stem and Bellows of Gate Valve in Nuclear Power Plants (원자력발전소 게이트밸브의 스템 - 벨로우즈 접촉면에 관한 연구)

  • Ko, Seok-Hoon;Shim, Dong-Hyouk;Kim, Dae-Youl;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1044-1048
    • /
    • 2006
  • Nuclear power generation is very dangerous in occasion that skirt of structure by earthquake although it is high effective generation that can make a lot of energies with few raw material. when design, it must consider a lot of problems caused by an earthquake. The seismic analysis of the structure has been great concern in the engineering society with an effort to reduce the severe damages from an earthquake. So the earthquake resistant design is one of the crucial design procedures of a gate valve used in nuclear power generation. The gate valve which has the contact area between stem and bellows. Because of the contact area. The gate valve should be given high stress and frictional wear. In this thesis, Considering the gate valve which has some contact distance between stem and bellows. The gate valve which has some contact distance is analyzed by a commercial FEM code of Ansys and Then compared to the gate valve behavior which doesn't have contact distance.

  • PDF

A Compact Model of Gate-Voltage-Dependent Quantum Effects in Short-Channel Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

  • Kim, Ji-Hyun;Sun, Woo-Kyung;Park, Seung-Hye;Lim, Hye-In;Shin, Hyung-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • In this paper, we present a compact model of gate-voltage-dependent quantum effects in short-channel surrounding-gate (SG) metal-oxide-semiconductor field-effect transistors (MOSFETs). We based the model on a two-dimensional (2-D) analytical solution of Poisson's equation using cylindrical coordinates. We used the model to investigate the electrostatic potential and current sensitivities of various gate lengths ($L_g$) and radii (R). Schr$\ddot{o}$dinger's equation was solved analytically for a one-dimensional (1-D) quantum well to include quantum effects in the model. The model takes into account quantum effects in the inversion region of the SG MOSFET using a triangular well. We show that the new model is in excellent agreement with the device simulation results in all regions of operation.

Analysis for Potentail Distribution of Asymmetric Double Gate MOSFET Using Series Function (급수함수를 이용한 비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2621-2626
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as doping distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

Analysis for Potential Distribution of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.691-694
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as charge distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

  • PDF

Analysis on Subthreshold Swing of Asymmetric Junctionless Double Gate MOSFET for Parameters for Gaussian Function (가우스 함수의 파라미터에 따른 비대칭형 무접합 이중 게이트 MOSFET의 문턱전압 이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.