Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.3.7

Analysis on Subthreshold Swing of Asymmetric Junctionless Double Gate MOSFET for Parameters for Gaussian Function  

Jung, Hakkee (Department of Electronic Engineering, Kunsan National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.3, 2022 , pp. 255-263 More about this Journal
Abstract
The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.
Keywords
Asymmetric; Double gate; Junctionless; Subthreshold swing; Oxide thickness; Projected range; Standard projected deviation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Bosch, J. P. Colinge, J. Lugo, A. Tataridou, C. Theodorou, X. Garros, S. Barraud, J. Lacord, B. Sklenard, M. Casse, L. Brunet, P. Batude, C. Fenouillet-Beranger, D. Lattard, J. Cluzel, F. Allain, R. N. Youcef, J. M. Hartmann, C. Vizioz, G. Audoit, F. Balestra, and F. Andrieu, Proc. 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) (IEEE, Hsinchu, Taiwan, 2020) p. 126. [DOI: https://doi.org/10.1109/VLSI-TSA48913.2020.9203690]   DOI
2 B. Singh, D. Gola, K. Singh, E. Goel, S. Kumar, and S. Jit, IEEE Trans. Electron Devices, 63, 2299 (2016). [DOI: https://doi.org/10.1109/TED.2016.2556227]   DOI
3 S. A. Hashemi, K. Beigi, and S. Jit, IEEE Trans. Electron Devices, 66, 4126 (2019). [DOI: https://doi.org/10.1109/TED.2019.2937205]   DOI
4 P. K. Tiwari, S. Kumar, S. Mittal, V. Srivastava, U. Pandey, and S. Jit, Proc. 2009 International Multimedia, Signal Processing and Communication Technologies (IEEE, Aligarh, India, 2009) p. 52. [DOI: https://doi.org/10.1109/MSPCT.2009.5164172]   DOI
5 Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, Microelectron. J., 42, 515 (2011). [DOI: https://doi.org/10.1016/j.mejo.2010.11.002]   DOI
6 C. Jiang, R. Liang, J. Wang, and J. Xu, AIP Adv., 5, 057122 (2015). [DOI: https://doi.org/10.1063/1.4921086]   DOI
7 H. Jung, Int. J. Electr. Electron. Eng. Telecommun., 8, 334 (2019). [DOI: https://doi.org/10.18178/ijeetc.8.6.334-339]   DOI
8 T. B. Hook, Joule, 2, 1 (2018). [DOI: https://doi.org/10.1016/j.joule.2017.10.014]   DOI
9 M. I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67, 3568 (2020). [DOI: https://doi.org/10.1109/TED.2020.3011645]   DOI
10 V. Kumari, A. Kumar, M. Saxena, and M. Gupta, Superlattices Microstruct., 113, 57 (2018). [DOI: https://doi.org/10.1016/j.spmi.2017.09.049]   DOI
11 P. K. Singh, K. Baral, S. Kumar, A. K. Singh, M. R. Tripathy, R. K. Upadhyay, and S. Jit, Proc. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (IEEE, Bangalore, India, 2020) p. 1. [DOI: https://doi.org/10.1109/CONECCT50063.2020.9198488]   DOI
12 H. H. Radamson, X. He, Q. Zhang, J. Liu, H. Cui, J. Xiang, Z. Kong, W. Xiang, J. Li, J. Gao, H. Yang, S. Gu, X. Zhao, Y. Du, J. Yu, and G. Wang, Micromachines, 10, 293 (2019). [DOI: https://doi.org/10.3390/mi10050293]   DOI
13 H. H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiang, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, and G. Wang, Nanomaterials, 10, 1555 (2020). [DOI: https://doi.org/10.3390/nano10081555]   DOI
14 G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, Sci. Rep., 11, 6610 (2021). [DOI: https://doi.org/10.1038/s41598-021-85968-y]   DOI
15 S. Zhang, J. Phys.: Conf. Ser., 1617, 012054 (2020). [DOI: https://doi.org/10.1088/1742-6596/1617/1/012054]   DOI
16 R. Kim, U. E. Avci, and I. A. Young, IEEE J. Electron Devices Soc., 3, 37 (2015). [DOI: https://doi.org/10.1109/JEDS.2014.2363389]   DOI
17 J. S. Yoon, S. Lee, J. Lee, J. Jeong, H. Yun, B. Kang, and R. H. Baek, IEEE Access, 7, 172290 (2019). [DOI: https://doi.org/10.1109/ACCESS.2019.2956503]   DOI
18 K. Baral, P. K. Singh, S. Kumar, S. Chander, K. Singh, and S. Jit, Proc. 2018 3rd International Conference for Convergence in Technology (I2CT) (IEEE, Pune, India, 2018) p. 1. [DOI: https://doi.org/10.1109/I2CT.2018.8529584]   DOI
19 P.S.T.N. Srinivas, A. Kumar, and P. K. Tiwari, Proc. 2019 IEEE 9th International Nanoelectronics Conferences (INEC) (IEEE, Kuching, Malaysia, 2019) p. 1. [DOI: https://doi.org/10.1109/INEC.2019.8853855]   DOI
20 T. Saxena, V. Khemka, G. Qin, M. Zitouni, and R. Gupta, IEEE Trans. Electron Devices, 68, 658 (2021). [DOI: https://doi.org/10.1109/TED.2020.3043993]   DOI
21 S. Sarkhel and N. Bagga, Proc. 2020 IEEE Applied Signal Processing Conference (ASPCON) (IEEE, Kolkata, India, 2020) p. 208. [DOI: https://doi.org/10.1109/ASPCON49795.2020.9276694]   DOI
22 D. Bosch, J. P. Colinge, G. Ghibaudo, X. Garros, S. Barraud, J. Lacord, B. Sklenard, L. Brunet, P. Batude, C. Fenouillet-Beranger, J. Cluzel, R. Kies, J. M. Hartmann, C. Vizioz, G. Audoit, F. Balestra, and F. Andrieu, Proc. 2020 IEEE Symposium on VLSI Technology (IEEE, Honolulu, USA, 2020) p. 1. [DOI: https://doi.org/10.1109/VLSITechnology18217.2020.9265036]   DOI
23 S. Folkersma, J. Bogdanowicz, A. Schuze, P. Favia, A. Franquet, V. Spampinato, D. H. Petersen, O. Hansen, H. H. Henrichsen, P. F. Nielsen, L. Shiv, and W. Vandervorst, Proc. 2018 22nd International Conference on Ion Implantation Technology (IIT) (IEEE, Wurzburg, Germany, 2018) p. 153. [DOI: https://doi.org/10.1109/IIT.2018.8807934]   DOI
24 M. I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67, 3568 (2020). [DOI: https://doi.org/10.1109/TED.2020.3011645]   DOI
25 N. K. Niranjan, S. Choudhury, M. Choudhury, K. L. Baishnab, K. Guha, and J. Iannacci, Microsyst. Technol., 27, 3757 (2021). [DOI: https://doi.org/10.1007/s00542-020-05160-6]   DOI
26 S. Gupta, N. Pandey, and R. S. Gupta, Proc. 2020 IEEE 17th India Council International Conference (INDICON) (IEEE, New Delhi, India, 2020) p. 1. [DOI: https://doi.org/10.1109/INDICON49873.2020.9342380]   DOI
27 D. Y. Jeon, M. Mouis, S. Barraud, and G. Ghibaudo, IEEE Trans. Electron Devices, 67, 4736 (2020). [DOI: https://doi.org/10.1109/TED.2020.3020284]   DOI