• Title/Summary/Keyword: One-Equation Turbulence Model

Search Result 83, Processing Time 0.027 seconds

Aerodynamic Calculations in Hover of KUH Rotor Blade (한국형 기동헬기 블레이드의 제자리 비행 공력 해석)

  • Kang, Hee-Jung;Kim, Seung-Ho;Jung, Mun-Seung;Lee, Hee-Dong;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

A Study of Unsteady Aerodynamic Characteristics of an Accelerating Aerofoil (가속익의 비정상 공력특성에 관한 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.556-561
    • /
    • 2003
  • Flight bodies are subject to highly unstable and severe flow conditions during taking-off and landing periods. In this situation, the flight bodies essentially experience accelerating or decelerating flows, and the aerodynamic characteristics can be completely different from those of steady flows. In the present study, unsteady aerodynamic characteristics of an aerofoil accelerating at subsonic speeds are investigated using a computational method. Two-dimensional, unsteady, compressible Navier-Stokes simulations are conducted with a one-equation turbulence model, Spalart-Allmaras, and a fully implicit finite volume scheme. An acceleration factor is defined to specify the unsteady aerodynamics of the aerofoil. The results show that the acceleration of the subsonic aerofoil generally leads to a variation in aerodynamic characteristics and it is more significant at angles of attack.

  • PDF

A Study of Supersonic Flow Around Lateral Jet Controlled Missile (측 추력 제어 미사일 주위의 초음속 유동현상 연구)

  • Min Byung-Young;Lee Jae-Woo;Byun Yung-Hwan;Hyun Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.28-34
    • /
    • 2002
  • A computational study of supersonic flow around lateral jet controlled missile has been performed. For this study, three dimensional Navier-Stokes code(AADL3D) has been developed. Spalart-Allmaras one equation turbulence model has been implemented on the AADL3D code for relatively rapid computational time. For the validation of developed code, AADL3D, pressure distributions on an ogive-cylinder body has been compared with experimental data. Also, the shock structure of sonic jet on the flat plate in the supersonic flow field has been compared with experimental flow visualization result to see the analysis capability of freestream-jet interaction case. A case study has been performed through comparing the normal force coefficient and the moment coefficient of missile body for several jet flow conditions. Current results will be used to the optimum design of a lateral jet controlled missile.

  • PDF

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.78-81
    • /
    • 2008
  • A numerical study of the unsteady flow in an over-expanded thrust optimized contour and compressed truncated perfect rocket nozzle is carried out in present paper. These rocket nozzles are subject to flow separation in transient phase at engine start-up and/or engine shut-down. The separation flow structures at different pressure ratios are observed. The start-up process exhibits two different shock structures such as FSS (Free Shock Separation) and RSS (Restricted Shock Separation). For a range of pressure ratios, hysteresis phenomenon occurs between these two separation patterns. A three-dimension compressible Navier-Stokes solver is used for the present study. One equation Spalart-Allmaras turbulence model is selected. The computed nozzle wall pressures show a good agreement with the experimental measurements. Present results have shown that present code can be used for the analysis of the transient flows in nozzle.

  • PDF

Computation of Turbulent Appendage-Flat Plate Juncture Flow (부가물-평판 접합부 주위의 난류유동 계산)

  • Sun-Young Kim;Kazu-hiro Mori
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.43-55
    • /
    • 1995
  • The turbulent flow around the strut mounted on the plate is studied numerically. The main objective of this paper is to validate the numerical scheme by the comparison of the computed results with the measured one, especially, to investigate the applicability of the Baldwin-Lomax(B-L) model to the juncture flow. Computations are made by solving Reynolds-averaged wavier-Stokes equation with MAC method. The computed results are compared with experimental data of Dickinson, collected in the wind tunnel at DTRC. Comparisons show good agreements generally except at the region of wake and very near the juncture. Reynolds stress model seems to be required to improve the accuracy applicable to the juncture flow in spite of the many simplification of the turbulence modelling in B-L model.

  • PDF

Analysis of Secondary Flow Effects on Turbulent Flow in Nuclear Reactor Fuel Rod Bundles (핵연료 집합체 내에서의 이차유동이 난류에 미치는 영향에 대한 해석적 분석)

  • Shon, Jae-Yeong;Park, Goon-Chul
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.275-284
    • /
    • 1991
  • It is important to predict the main feature of fully developed turbulent secondary flow through infinite triangular arrays of parallel rod bundles. One-equation turbulence model which include anisotropic eddy viscosity model was applied to predict the exact velocity field. For a constant properties, Reynolds equations were solved by the finite element method. Mean axial velocity near the wall is simulated by the law of the wall. The numerical results showed good agreement with avaiable experimental data. The strength of the secondary flow increased with Reynolds number but decreased with rod spacing, P/D (pitch-to-diameter). The secondary flow affects remarkably the distribution of the axial velocity, wall shear stress and turbulent kinetic energy in the closely packed rod array bundles.

  • PDF

ON THE MODELLING OF TWO-PHASE FLOW IN HORIZONTAL LEGS OF A PWR

  • Bestion, D.;Serre, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.871-888
    • /
    • 2012
  • This paper aims at presenting the state of the art, the recent progress, and the perspective for the future, in the modelling of two-phase flow in the horizontal legs of a PWR. All phenomena relevant for safety analysis are listed first. The selection of the modelling approach for system codes is then discussed, including the number of fluids or fields, the space and time resolution, and the use of flow regime maps. The classical two-fluid six-equation one-pressure model as it is implemented in the CATHARE code is then presented and its properties are described. It is shown that the axial effects of gravity forces may be correctly taken into account even in the case of change of the cross section area or of the pipe orientation. It is also shown that it can predict both fluvial and torrential flow with a possible hydraulic jump. Since phase stratification plays a dominant role, the Kelvin-Helmholtz instability and the stability of bubbly flow regime are discussed. A transition criterion based on a stability analysis of shallow water waves may be used to predict the Kelvin-Helmholtz instability. Recent experimental data obtained in the METERO test facility are analysed to model the transition from a bubbly to stratified flow regime. Finally, perspectives for further improvement of the modelling are drawn including dynamic modelling of turbulence and interfacial area and multi-field models.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF