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Abstract

It is important to predict the main feature of fully developed turbulent secondary flow
through infinite triangular arrays of parallel rod bundles. One-equation turbulence model
which include anisotropic eddy viscosity model was applied to predict the exact velocity field.
For a constant properties, Reynolds equations were solved by the finite element method.
Mean axial velocity near the wall is simulated by the law of the wall. The numerical results
showed good agreement with avaiable experimental data. The strength of the secondary flow
increased with Reynolds number but decreased with rod spacing, P/D (pitch-to-diameter). The
secondary flow affects remarkably the distribution of the axial velocity, wall shear stress and
turbulent kinetic energy in the closely packed rod array bundles.
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through the bundles. It is important to predict the
1. Introduction exact velocity distributions of the fluid which are
input data for accurate calculation of the tempera-

Most nuclear power reactors have fuel bundles ture field. However, it is very difficult to analyze
which consist of a parallel matrix of rods arranged the flow phenomena due to the complex turbulent
mainly in triangular and square arrays. In the phenomena in such closely—packed geomefry,
space between the rods, the coolant flows axially where the secondary flows are very active. Re-
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cently, the phenomena of secondary flow have
received increasing attention because heat transfer
is enhanced by it. However, current design
methods are usually based on a subchannel mix-
ing technology which involves subchnnel-average
quantities and does not explictly recognize the
secondary flows.

Therefore in this work, the secondary flow in
infinite triangular arrays of the parallel rods is
analyzed by the one—equation turbulence model.
Anisotropic eddy viscosity is considered by intro-
ducing the different length scale for the eddy vis-
cosity normal and parallel to the wall. In the
analysis of turbulent secondary flow -velocity dis-
tribution, the Reynolds stress model proposed by
Launder and Ying is used. To find the numerical
solutions of the goveming equation, the finite ele-
ment method is adopted and the integral form of
the goveming equations are constructed by the
Galerkin’s weighted residual method, where the
weighting function is the same as the shape func-
tion. The numerical results are compared with the
available data. And this work calculates shear
stress distribution, secondary flow velocity field,
axial velocity field, turbulent kinetic energy and
friction factor by varying Reynolds number and
P/D (pitch-to—diameter). The isotropic and ani-
sotropic effects are included in the analysis of
velocity distribution.

2. Turbulence Model

Among the various models of the turbulent flow
in the nuclear rod bundles, the present numerical
predictions are a continuation of rod bundle work
initiated in 1966 by Trupp and Azad in which a
wide—ranging experimental stLidy was conducted
on the equilateral triangular rod bundles arrays.
[1] Since that time, a related study was under-
taken in which fully—developed turbulent flow was
explored experimentally for a triangular duct. The
measured secondary flows are successfully pre-
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dicted using the Launder-Ying model. For the
turbulence model of this work, the one—equation
turbulence model is adopted where the Reynolds
stress can be expressed in terms of axial velocity
gradient and eddy viscosity based on turbulent
kinetic energy by Kolmogorov— Prandtl turbulent
kinetic energy hypothesis. [3] Local turbulent phe-
nomena are dependent on local length scale and
turbulent kinetic energy due to fluctuations of the
turbulent flow.

The transport equation of the turbulent kinetic
energy equation construct the one-equation
where the length scale can be obtained algeb-
raically. In this model, eddy viscosities are impor-
tant parameters to predict flow phenomena in the
complex geometry. Experiments have shown that
the effects of the anisotropic eddy viscosity play
an important role on the flow and heat transfer
mechanism. Thus in this study the effect of the
anisotropy is considered by regarding it as a func-
tion of length as well as direction to the wall. [4]
Slagter’s description for the length scale is used,
which depends on locus as well as direction from
the wall, and was deduced from experimental cor-
relation of Carajilescov and Todreas{4]. And in
the vicinity of the wall, the velocity field is analy-
zed by the wall function because the pattem of
flow is laminar.

3. Governing Equation

A primary flow cell for rod bundle arrays is
shown in Figure 1 together with the rectangluar
coordinate system (x,y,2) used in the investigation.
The fundamental equations for the computation of
velocity field in any geometry are the Navier-
—-Stoke’s equation and continuity equation. For
fully developed turbulent flow with a constant
thermal properties of fluid, the Reynolds equation
are gievn by the following equations.

(a) X-directional momentum equation ;
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(b) Y-directional momemtum equation :
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(c) Z-directional momentum equation ;
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(d) Continuity equation ;
iy_ + _G_‘K = 0 (4)
dx ay

here the notations are conventional, and
%?s independent of x and y direction and con-
stant in the cross-sectional area. In the above
Reynolds equations, Launder and Ying have prop-
osed Reynolds stress employing the following sim-
ple equations.

U

dax

oy
— oU
P=-Clil 5] (7)
w’=-CIZ [(*)2] (8)

dw=-Cl% [( )2( )2] )
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where #;; and #,, are anisotropic eddy visco-
sies and C is an assignable turbulent constant
and 1. is length scale. Substituting equation (6) to
(7) into equation (3) yields following equation.

aU au 1 aP ]
V—+W—) = ———+ —[(v+
X ay p 9z ax
14 ] 1
) ]+ — [+ py —] (10)
dx ay dy

Kolmogorov—Prandtl turbulent energy hypothesis
is adopted to evaluate the eddy viscosity. In.this
hypothesis, the eddy viscosity is related to tﬁe
local values of the turbulence length scale 1 and
the turbulent kinetic energy by the following equa-
tion.

b= Gk, (11)

where C; is constant. And the turbulent kinetic
energy equation is given by the following equa-
tion.

kn dk
Z(v+ ——)—-]+ Z (v =2) )
dx o) dy oy 0y
-1,32 oU au
= Caly K gy () + gy (—)
dx ay
k ok
=V— 4+ W— (12)
dx ay

where C, is the turbulent constant, o, is a
turbulent Prandtl number for kinetic energy tran-
port, Iy is a length scale and #,;, #,, are eddy
viscosity in the direction normal and parallel to
the wall. It is necessary to model the eddy viscos-
ity which needs the length scales in solving above
governing equations. Wolfshtein’s description for
the length scale 1. and 14 are given by the follow-
ing equations.

{

w=xll-ep(- AR)] (13)

Iy = x[1~exp(—AR)] (14)
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where Ax and A4 are constants and x is the
distance from the wall. R is local turbulent
Reynolds number which is defined by the follow-
ing equation.
o x k12

(15)
)

Slagter proposed anisotropic length scale model,
which depends on locus as well as direction from
the wall and was deduced from the experimental
comrelation of Carajilescov—Todreas.

The length scale of turbulent viscosity normal to
the wall is given by the following equation.

[u,l = x[1-exp (—AFR) 1,
for x, < 0.25 X

lug = % {025 + 0.066sin [ (—)
0.55

X
((=)-025)] ),
X
and the length scale of turbulent eddy viscosity for
the parallel to the wall is given by the following

equation.
lu 2=x[1-exp(-A » R)] (17)

where )ZI is the profile length denoting the nor-
mal distance from the wall to the position of the
maximum velocity. The eddy viscosity in the
direction normal to the wall was modeled by the
following equation.

my = Crpk?i,, (18)

And the eddy viscosity in the direction parallel to
the wall is given by the following equation.

pp = Cypkl,, (19)

where C; and C, are constants.

For the boundary conditions, the no slip condition
is applied at the solid boundary, whereas mean
velocity and turbulent kinetic energy gradients are
zero on the maximum velocity line and 4 =0 and
7 /6 boundaries due to symmetry. On the two
radial boundaries (# =0 or 30°), the secondary
velocity component V is zero everywhere since
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the secondary flows can not cross a boundary.
However the secondary velocity W on the central
boundary may have finite values along these
boundary. The boundary conditions for mean
axial velocity was imposed by the wall functions
on the first string of nodes in the fluid adjacent to
the wall. The wall function of axial velocity are
obtained from the law of the wall.[9] The wall
functions are described by the following equa-
tions.

Ut = y* for 0sy*<s

+

Ut = =305+ 50y for 5sy*<30

Ut = 55+25my* for y*<30

U U
where y* = Y ,Ut = — and v
v u
= (ryrp). (20)

The boundary condition for the turbulent kinetic
energy which is imposed at the same nodes is
given by the following equation.

b=l e (21)

To solve above wall function, updated values of
shear stress are used in the main iterative proce-
dure. After each iteration, local values of wall
shear stress are computed at the second string of
nodes by the following empirical correlation.

(Twip)

U= ——"7—{25W[76py
(€,C )" (k)2

Cc)®?ny) @

where C, and C74 are turbulent constants. Using
the current computed values of U and k, the new
shear stress are then used to revise the U and &
boundary condition for wall function.
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4. Numerical Method

For computation of the solutions of thr—
ee—dimensional governing equations, the finite
element technique which has been known to be
suitable to accurately describes such complex
geometry as the fuel bundles. And integral forms
are constructed by Galerkin’s—weighted residual
method. The flow region is divided into triangular
element and shape functions of velocity, turbulent
kinetic energy, pressure are linear interpolating
function and uniquely defined by the values at the
nodal points of the element. To solve governing
equations, the successive—substitution technique is
used. Pressure and velocity field are obtained
from momentum equations and them turbulent
kinetic energy is solved by the turbulent kinetic
energy equation.

5. Result

The geometry tested is shown in figure 1. The
rectangular coordinate is used to analyze the
secondary flow phenomena of fully developed
turbulent flow in the rod bundle channel. Water is
used for working fluid. The procedure of calcula-
tion is carried out by varying Reynolds number
and pitch—to—diameter. And the diffemce between
isotropic and anisotropic case is shown in the re-
sults.

5.1 Effects of Reynold Number and P/DRatio on
the Velocity Field

The distribution of axial velocity and turbulent
kinetic energy in figure 3 and figure 2. Contour of
predicted secondary velocities are shown in figure
4 with Reynolds number. The maximum secon-
dary velocity is shown on either in the return flow
near the wall or adjacent to the maximum axial

velocity line. The predicted mean axial velocity
distribution for P/D=1.2 is shown in figure 5.
The axial velocity increases with going to the
MVL. The predicted distribution of turbulent kine-
tic energy is shown in figure 6. The effects of
Reynolds number and P/D on the secondary
velocity field are compared in figure 9-14. The
friction factor calculated is shown in figure 16 with
varying Reynolds number. For a given P/D, fric-
tion factor decreases with increasing Reynolds
number. For a given Reynolds, friction factor in-
creases with P/D. For a given P/D, the effecfs of
increasing Reynolds number on the secondary
velocities are illustrated in figure 13 and 14. As
can be seen in figure 13, W normalized by U
generally becomes increasing with Reynolds num-
ber. Figure 15 shows that increasing Reynolds
number flatterns the wall shear stress distribution.

5.2 Effect of Anisotropic Eddy Viscosity and
Secondary Flow

The predicted secondary flow pattern in a primary
flow cell consists of a single cell of secondary flow
which transports fluid from the high momentum
region near the subchannel center to the low
momentum region near the gap via the maximurr
veocity line boundary with return flow along the
rod surface. Se?,ondary flows arise mainly due to
anisotropy in the Reynolds stress and then secon-
dary velocities of anisotropic case is higher than
isotropic case. And this secondary velocity makes
axial velocity higher. Therefore, the effect of
secondary flow is evident on the mean axial
velocity, turbulent kinetic energy and wall shear
stress distribution. It acts on to homogenize walil
shear stress along the rod surface by increasing
the local value of shear stress, Thus, experimental
data on anisotropy factor and secondary velocity
distribution are required to explain more realistic
flow preditions which ultimately should establish
the true role and importance of secondary flows.
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6. Conclusion and Discussion

In this study, the secondary flow in the turbu-
lence phenomena is analyzed in infinite triangular
amray rod bundles. The one—equation turbulence
model is used to analyze the turbulence phe-
nomena. From the results of this study, anisotropy
eddy viscosity plays important role in the turbulent
flow. Hence, the exact anisotropic eddy viscosity
model should be new form to analyze the exact
pressure field and secondary velocity fieds. The
effect of secondary flow and anisotropy is evident
on the turbulent flow phenomena but current de-
sign methods are usually based on a subchannel
mixing technology which involves subchanne-

l-average quantities and does not explicityly re-
congnize secondary flows. Hence, the turbulence
model of the secondary flow is very important in
the modeling of exact flow phenomena. Numeric-
al results are partially compared with experimental
data and results showed good agreement with ex-
perimental data. However, the more experiments
are needed because there are no reliable data on
the secondary flow.

Reference

1.  Kim,Sin. and G.C. Park, “Analysis of Anisot-
ropic Turbulent Hear Transfer in Nuclear
Fuel Bundles,” 1213 3]z, 204, 13,
(1988)

2. S.S Rao. “The Finite Element Method in En-
gineering,”

3.  Carajilescov, P., “Experimental and Analytic-
al Study of Axial Turbulent Flows in an In-
terior Subchannel of a Bare Rod Bundles,”
PhD thesis, M.I.T., 1975

4. Trupp, A.C. and Aly, AMM., “Predicted
Secondary Flows in Triangular Array Rod
Bundles,“ Journal of Fluid Engineering,
Vol.101,(1979)

J. Korean Nuclear Society, Vol. 23, No. 3, September 1991

5. Trupp, A.C. and Azad, R.S., “The Structure
of Turbulent Flow in Triangular Array Rod
Bundiles,” Nuclear Engineering and Design,
Vol.32, No.1.(1975)

6. Subbotin, V.I. and Ushakov, P.A., “Velocity
Field of Turbulent Fluid Flow in a Longitudal
Streamline of Chusters of Rods,” United
States Atomic Energy Commision,(1971)

7. Talyor, C. and Hughes, T.G., “Finite Ele-
ment Programming of the Navier-Stokes
Equation,” Pineridge Press Ltd.,(1981)

8. J.H. Rust, “Nuclear Power Plant Engineer-
ing,” Haralson Publishing Book
Company(1979)

9. J.0. Hinze, “Turbulence,” 2nd ed. Mc—Graw
Hill Book Company. New York,(1975)

10. AMM, Aly, A.C. Trupp, and A.D. Gerrard,
“Measurements and Prediction of Fully De-
veloped Turbulent Flow in an Equilateral
Triangular Duct,” Joumal of Heat Transfer,
Vol.85,(1978)

11. J. Hejna and F. Mantlik, “Turbulent Flow in
Rod Bundles with Geometrical Disturbance,”
Journal of Heat Transfer and Fluid Flow,
Vol.59,(1982)

12. M.J. Crochet and Keunings, “On Numerical
Die Swell Calculation,” Journal of Non-
~Newtonian Fluid Mechanics, Vol 10,(1982)

13. W. Slagter, “Finite Element Solution of Axial
Turbulent Flow in a Bare Rod Bundle Using
a One-Equation Turbulence Model,” Journal
of Nuclear Science and Engineering,
Vol.82,(1982)



Analysis of Secondary Flow Effects on Turbulent Flow---J.Y. Shon and G.C. Park 281

Table 1 Constants of Turbulence Model | e
Ad 0.236 N
Ax 0.0186 P
Cl 0.22(isotropic case) Ee
C2 0.22(isotropic case)

Cd 0.416 3 N

o, 1.53(one equation model)

Cv 022 N

cd 039 X

C 0.006 Y
Y
W

NOMENCLATURES H

A element domain v

Ay A empirical constants “1

C,C,,Co empirical constants o

Ca,C..Cy 4

D diameter of the fuel rod g

k turbulent kinetic energy gy

k* =kA1 %2 dimensionless turbulent kinetic energy

L;,La L3  shape function T,

la length scale for dissipation

length scale for eddy viscosity
approximation polynomial
pressure

local turbulent Reynolds number
Reynolds number

mean axial velocity

friction velocity

distance from the wall

profile length

dimensionless distance
secondary velocity component
secondary velocity component
laminar viscosity

kinematic viscosity

eddy viscosity normal to the wall
eddy viscosity parallel to the wall
density of the fluid

laminar Prandtl number

Paradtl number for the turbulent kinetic
energy

shear stress on the wall

Subchannel

tested.

Fig. 1 Rod Bundle Array.
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Fig. 4 Countour of Secondary Flow
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