• Title/Summary/Keyword: One-Dimensional

Search Result 6,770, Processing Time 0.032 seconds

THE CUSP STRUCTURE OF THE PARAMODULAR GROUPS FOR DEGREE TWO

  • Poor, Cris;Yuen, David S.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.445-464
    • /
    • 2013
  • We describe the one-dimensional and zero-dimensional cusps of the Satake compactification for the paramodular groups in degree two for arbitrary levels. We determine the crossings of the one-dimensional cusps. Applications to computing the dimensions of Siegel modular forms are given.

Design of Key Sequence Generators Based on Symmetric 1-D 5-Neighborhood CA (대칭 1차원 5-이웃 CA 기반의 키 수열 생성기 설계)

  • Choi, Un-Sook;Kim, Han-Doo;Kang, Sung-Won;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2021
  • To evaluate the performance of a system, one-dimensional 3-neighborhood cellular automata(CA) based pseudo-random generators are widely used in many fields. Although two-dimensional CA and one-dimensional 5-neighborhood CA have been applied for more effective key sequence generation, designing symmetric one-dimensional 5-neighborhood CA corresponding to a given primitive polynomial is a very challenging problem. To solve this problem, studies on one-dimensional 5-neighborhood CA synthesis, such as synthesis method using recurrence relation of characteristic polynomials and synthesis method using Krylov matrix, were conducted. However, there was still a problem with solving nonlinear equations. To solve this problem, a symmetric one-dimensional 5-neighborhood CA synthesis method using a transition matrix of 90/150 CA and a block matrix has recently been proposed. In this paper, we detail the theoretical process of the proposed algorithm and use it to obtain symmetric one-dimensional 5-neighborhood CA corresponding to high-order primitive polynomials.

One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment (대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조)

  • Nam-Woo Kim;Jin-Su Kim;Geun-Hyoung Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.279-284
    • /
    • 2023
  • One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test (봉충격시험에 의한 동합금의 동적 항복응력 결정)

  • 이정민;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.

Analysis of Steady Flows in a Rectangular Container with a Characterization of the Free Surface by One-Dimensional Motion (1차원 표면유동의 정량화에 따른 직사각형 용기내의 정상유동 해석)

  • 변민수;서용권
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.227-231
    • /
    • 2001
  • Analysis of two-dimensional unsteady flows with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We consider the surface tension as well as the viscous/elastic properties of the free surface. One-dimensional analysis as well as experiment is used in establishing the free surface properties. The steady recirculatory flow is visualized by a laser sheet. It is shown that the one-dimensional analysis provides useful informations associated with the free surface properties.

  • PDF

A Three-Dimensional Locally One-Dimensional Multiresolution Time-Domain Method Using Daubechies Scaling Function

  • Ryu, Jae-Jong;Lee, Wu-Seong;Kim, Ha-Chul;Choi, Hyun-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2009
  • A three-dimensional locally one-dimensional multiresolution time-domain(LOD-MRTD) method is introduced and unconditional stability is proved analytically. The updating formulations have fewer terms on the right-hand side than those of an alternating direction implicit MRTD(ADI-MRTD). The validation of the method is presented using the resonance frequency problem of an empty cavity. The reduction of the numerical dispersion technique is also combined with the proposed method. The numerical examples show that the combined method can improve the accuracy significantly.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

Adaptability of one-dimensional analysis for the flow distribution of a complex duct system (복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성)

  • 이승철;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF

GENERALIZED DIFFERENCE METHODS FOR ONE-DIMENSIONAL VISCOELASTIC PROBLEMS

  • Li, Huanrong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.55-64
    • /
    • 2005
  • In this paper, generalized difference methods(GDM) for one-dimensional viscoelastic problems are proposed and analyzed. The new initial values are given in the generalized difference scheme, so we obtain optimal error estimates in $L^p$ and $W^{1,p}(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}(2\;{\leq}\;p\;{\leq}\;{\infty})$ between the GDM solution and the generalized Ritz-Volterra projection of the exact solution.

  • PDF

An Experiment and Numerical Analysis for One-Dimensional Surface Flow (1차원 표면유동에 관한 실험과 수치해석)

  • Byun, Min-Soo;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.136-141
    • /
    • 2001
  • In this study, we analysed tree surface flow by using the experimental and numerical method with a different surfactant concentration. We compared numerical solution with experimental results for one-dimensional model. The result shows that in general the tree surface velocity can well be reproduced by the one-dimensional model for various surfactant concentration.

  • PDF