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GENERALIZED DIFFERENCE METHODS FOR
ONE-DIMENSIONAL VISCOELASTIC PROBLEMS

HUANRONG LI

ABSTRACT. In this paper, generalized difference methods(GDM) for one-dimensional
viscoelastic problems are proposed and analyzed. The new initial values are given
in the generalized difference scheme, so we obtain optimal error estimates in L? and
WP(2 < p < o) as well as some superconvergence estimates in W'?(2 < p < 00)
between the GDM solution and the generalized Ritz—Volterra projection of the exact
solution.

1. INTRODUCTION

Consider the following initial boundary value problem for the one-dimensional equa-
tion of viscoelasticity :

(@) uy= %{a(m,t)%% + b(m,t)g—g—} + f(z,t), (z,t) € (a,b) x (0,T],
(b) u(a,t) =0, wu(b,t)=0, te0,T), (1.1)
(¢) u(z,0) = uo(x), w(z,0) =ui(z), z€l=]ab]

where u; = %—’t‘, Ugt = g—i,}*. a(z,t), b(z,t), f(z,t), uo(z) and ui(z) are smooth enough
to ensure the analysis validity and a(z,t) is bounded from above and below:

0 < ag <alz,t) <M, (z,t) € (a,b) x [0,T]. (1.2)

Since we shall show that the approximate solution is uniformly convergent to the exact
solution of (1.1), the above assumptions only need to hold in a neighborhood of the
exact solution.

The problem(1.1) describes many physical processes such as heat transfer with
memoryll’zl, gas diffusion3, propagation of sound in viscous medial4® and fluid dy-
namics.

The finite element methods to problem(1.1) have been studied by several authors.
Y.P.Lin and Cannon!® demonstrated optimal order error estimates in the L? norms
and LP norms error estimates in R%(d < 4). Optimal maximum norm estimates are
given by other author. However, the generalized difference methods haven’t been used
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to deal with the viscoelastic problem(1.1). In fact, the generalized difference methods
have the same convergence orders as the corresponding finite element methods, but
they require less computational expenses, and keep the mass conservation("8l.

The aim of this paper is to provide a theory for the generalized difference methods
for the two—dimensional problem(1.1)of viscoelasticity. We derive the optimal error
estimates in LP and WP for 2 < p < 0o. Moreover, some superconvergence is also
obtained.

The paper is organized in the following way. In section 2, the new initial values are
given and the semi-discrete generalized difference schemes are formulated in piecewise
linear finite element spaces. Some important lemmas are introduced in section 3, which
are essential in our analysis. Main results of this paper are given in section 4.

2. SEMI-DISCRETE GENERALIZED DIFFERENCE SCHEMES

In this paper we will follow the notations and symbols in [7]. For examples, T} =
{Ii;Ii = [.’L’i_l,iEi],l <1 < TL}, and T,: = {I?{'If = [xi_;,xH;],l < t <n-— 1, Ig =
2 2

R

[a:o,x%], I* = [3:

. -3 , Tp]}denote the primal partition and its dual partition, respec-

n
tively. Let h; = «; — -1, h = maz{hi;1 < i < n}. The partitions are assumed to
be regular, that is, there exists a constant u > 0 such that h; > ph, i = 1,2,---n.
The trial function space U C HL(I) = {u € H(I);u(a) = u(b) = 0} is defined as
a piecewise linear function space over T}, and Uy = span{p;(z),1 < i < n—1}. The
test function space Vi = span{t;(z),1 < i < n— 1} C L*(I) is defined as a piecewise
constant function space over 1.

For numerical analysis, we need to introduce the interpolation operators II;, from
HY(I)NC(I) to Uy defined by

n—1

Myw = Zw(xi)wi(x),w € H(} (1)7 (21)

i=1
and 1T} : HY(I)NC(I) — V}, defined by

n-1

rw=>_ wz)yi(z),w € Hy(I). (2.2)

=1

Using the interpolation theory, we have

(@) |w—Tpwlmyp < C’hk"m|w|k,p , m=0,1, k=1,2, 1 <p< oo

) v - Twlop < Chluly,  1<p<oo. (23)

where |- |m,p and ||-||m,p stand for the semi-norm and norm of the Sobolev space Wm™P(T)
respectively, | - |m and || - ||mstand for the semi-norm and norm of the Sobolev space
H™(I) = W™2(I) respectively, and C is a positive constant independent of h.
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Let’s define, for any u, v € H3(I), up € Uy and vy € Vj,some bilinear forms as
follows:

b

a(u, v) =/ a(z, t)u'v'dz;
b

b(u, v) = /b(x t)u'v de;

c(u, v) —b(u, v) at(u, v);

(2.4)
a (uh, 'Uh ZUJG, (uh,’(p]
J 1
b* (up, vn) ngb (un, ¥j);
c*(up, vh) = b (Uh, vp) = ag (un, vh),
where a*(up, ;) and b*(up, ;) defined by
a*(un, ¥;) = @, ;ulh(x %) - a’j+%u,h(xj+%)7
» b* (un, ¥y) =b ;uﬂl(xj %) bj_{_%ulh(xj_'_%)
with u(z; 1) = y—l_—ul—‘—l Ju = g’;‘,v’ = gg,uJ = up(z;),v; = vp(zj) v = O,up =

0,z;_1 = 2(xJ_1 + xj) a;_1 = a(z;_1, t),b;_1 = b(xj 1,t) and the coeflicients of
2 2 2
at(-5+, ), ar (-, -) and be(5+,-), b (5, 7) which appear in the followmg are obtained from
differentiating the corresponding coefficients of a(-;-,-), a*(:;+,) , b(+;+,-) and b*(+-, )
with respect to t, respectively.
The generalized weak form of (1.1) is to find a map u(t) : [0,T] — H}(I), such
that
(@) (us,v) + alug,v) + b(u,v) = (f,v), VveH(),
) u(z,0) = uo(z), u(z,0) = w(x), zel.
For error estimates, we next introduce the Ritz projection operator Ry,
H})(I) — Uy, 0 <t < T, defined by

a(u — Rpu, vp) =0, Vv, €Us, (2.6)

the generalized Ritz projection operator R; = Rj(t) : HYI)— U, 05t < T,
defined by

(2.5)
Rh(t) :

Il

a*(u— Rju, vp) =0, Yu, €W, (2.7)
and the generalized Ritz-Volterra projection operator V;\ = ViE(t) - Hy(I) = Up,0 <
t < T, defined by

t

CL*(U - V;’U;, ’Uh) + / C*(u - V}:uv vh)dT =0, Vue Vh, (28)
0

Differentiating (2.8) with respect to t, we can obtain the equivalence of (2.8):
{ a*((u— Viw)e, va) + b*(u = Vyu, vp) =0, Y vy, € Vi,

a*(u(0) — Viu(0), vp) =0, Vup €Vh (2.8")
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Obviously, V;*(0) = R}(0). Then, the semi-discrete generalized difference schemes of
(1.1) is to find a map up(t) : [0, 7] — Uy, such that

(@) (whte, vh)+a*(unt, va) + b (un, vn) = (f, vn)y, VUvn €V, (2.9)
(b) up(0) = uon, unt(0) =win, z€l. '

where uop, = Vjup = Rjuo, uip € Uy satisfies
a*(u1n, vn) = (£(0), vn) — b*(uon, va) — (Viw)u(0), vn), V v € Vi,
here, (V¥u)s(0) satisfies: V v, € Vh,
0 ((u = Vyu)e(0), vp) +a*((u — Vyw)u(0), va) +b"((u = Vyu)e(0), vn)
+b; (v — Vyu)(0), vp) =G,
and uy(0) = 6815{ (z, O)?9 + b(z, )%9} + f(z,0), (V;u):(0) is uniquely determined

by
a*((u — Viu)e(0), vp) + b*((u — Vyu)(0), vp) =0, V up € Vh.

3. SoME LEMMAS

Noting that for any up € Uy, we have, by (2.2)

Iuhllp Z/ Iuhlpdl‘)l’ = {Zh ul 1)1’}%‘

Define some discrete norms in Up:

lunllon = {Zh,(u +ul )},
— U; 2 1
Iuhllh—{z (i = ui1)7yy5

1
unlln = (HUhlIo,h+ Iuhl 1h)%-

Then we can easily prove the following lemmas.

Lemma 3.1(See(7,8))There exist two positive constants C; and Cs, independent of h,
such that for any up € Uy,
(@) |unlip = lunls;
®  Cillunllop < llunllo < Callunllon; (3.1)
(¢ Cillunllip < flunlh <

Lemma 3.2(See(7,8]) For V up, wy € Up,

(1) (un, Mjwn) = (wp, iup)
(2) Let |||up|||z = (un, ITjup),, then ||| - ||} is equivalent to || - [|o in U
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According to the technique given in [7,8], it is easy to derive the following conclusions:

Lemma 3.3 There exist four positive constants @, M;, Ms and M, independent of
h, such that for Vu, v € U,

a)  a(u, v) > alfullf;

() la(u, v)| < Mlfull|v]s;
) |b(u, v)] < Mallulh|lv]ls;
@) le(u, v)| < Mlfull[lo]lr-

(3.2)

Lemma 3.4 There exist four positive constants a, M;, M and M, independent of
h, such that

(@)  a*(up, Mju) > allupl?, Vup€ Us;
(0)  la*(un, Mhun)| < Myllup|la|lvalls, ¥ un, vn € Ug; (3.3)
() 1b*(un, Tvp)| < Mallupllillonlli, V¥ un, va € Up;
(@) le*(un, Mhop)| < Mlfuallslvnlly, ¥V un, vn € U,
For simplicity, we set
di(u — up, wp) = a(u — up, wp) - a*(u — un, Mywy),
da(u — up, wp) = b(u — up, wp) — b*(u ~ up, Mywp).
We now present a very useful lemma:
Lemma 3.5 If w € W3P(I), for any up, va, wy € Uy, we have
(@) |di(u — un, wp)| < Ch2(h™Hu — uplip + |ulsp)llwallipy;
(5)  lds(vn, wa)l < Chlonllpllwnlliy )
() |do(u—un, wp)| < CRA(h™Hu ~ unl1p + |ulsp)llwnllip;
(d)  |d2(vn, wa)| < Chllvalhpllwallrp-
101
where 1 < p < 00, >t =1
Lemma 3.6 For any up, vp, wp € Up, we can get
(@) la*(un, Tiwy) — a*(wp, Thup)| < Chilusllillwnlh; (35)

(b) (6% (un, Mhwn) — b*(wh, Mhun)l < Chlunllillwallr-

Remark: If the coefficients of the bilinear forms a(-,), b(-,-), a*(:,-) and b*(-,-) are
replaced by other functions, the lemmas 3.3-3.6 are still valid.

Let X be a Banach space with norm || - ||x and ¢ : [0,T] — X. Define

T
IolZ20x) = /0 lolkdt  and ||9]lLe(x) = ess JSup lelx-
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Let the space H*(W?*P) be defined by

J
Hk(O,T; WoP) = {u € W*P, 6671; € L2(O,T;Ws’p), j=0,1,---,k}

and for any u € H¥(W*P), we set

u(t) s = Z{n o+ [ 15 st} 1€ 0T

Similar to the proof given in [7,9,10 ], we can deduce the properties of the generalized
Ritz — —Volterra projection.
Lemma 3.7 V;'u is defined by (2.8) or (2.8)", then

(a)  IDi(u~Vyu)lhp < Chllulliap, 1=0,1,2,3, 2<p<Soo;
3

Tk 2 oL (35)
(b) ”Dt(u - Vh u)llo,p S Ch 1|u||l,3,]17 | = 07 1> 2: ) 2 S D S 0.
+ (Viu —

For convenience, we write up — u = (up — Vyu) + (Viu — u) = £ + 7 in this paper.

Lemma 3.8 If ug, u; and uon, u1s, are the initial values of (1.1) and (2.9), respectively,
then

(0)  11€&0)lls < Ch*(lluolls + llulls + lluee (0)3)
Proof. Obviously, £(0) = uop — Vj ug = 0. By noting that

((Vyu)(0), va) = (£(0), vn)—a*(urn, vn)—b"(uon, va); va) = (unt(0), va), ¥ vn € Vi,
we can know (V*u)e(0) = une(0),, ie. £4(0) = 0, the conclusion of (3.7a) is proved.
To show (3.7b), apply (2. 5) (2.9) and (2.8') to get the error equation:

(gtt: 'Uh,) + a*(gt) Uh) + b*(ga Uh) = _(ntt7 Uh)7 V Uh € Vh7 (38)

Integrating (3.8) with respect to ¢ and noting £(0) = 0 , we can obtain the equivalence
of (3.8), by (2.4b)

t
(&, vn) +a"(§, va) +/0 (€, vp)dr = ~(ne — &(0) — n:(0), vn), Yvn € Va, (3.8)
Setting t = 0 and vy, = II},£,(0) in (3.8), we have, by (3.7a)

a*(£:(0), I1;£:(0)) = —(m(0), Mi£:(0)),
Also from (3.3a) and (3.5b),

all& )12 < Ine(0)[1l1€0)) < Ch*(lwolls + lurlls + lluse (0) 1)1 (O) 1.
Hence, this completes the proof of (3.7b). O

Lemma 3.9 If u and uy, are the solution of (1.1) and (2.9), respectively, then

&) + gl < Ch*{Jlulls + llurlls + llux(0) 13 +/0 (lulls + lluells + Hlueells)dr}. (3.9)
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Proof. Taking vy = II}&; in (3.8), we have

(&ees TIRE) + a® (&, MMREe) +07(E, M1&t) = —(nu, T17&),

The above is also written as
1d
2dt

(6P +a* (6, T3E) + 556 THE) = ~(nes Thi6e) + 500766, T3)

1 * *
_b*(é, H;;ﬁt)] + ibt (5) Hh£)7
Noting £(0) = 0, lemmas 3.4 and 3.6 and integrating from 0 to t, we get

t t t
I+ €} < &) +C / Il +C /O Bl [l dr + C /0 ll2dr
i t t
< &) +C /0 ImeellPdr + C /0 letl2dr + C /0 le2dr,

(3.10)

(3.11)
here we have applied the inverse properties of the finite element space and the inequality

Né:lln < Ch71|&;)|. Thus, the conclusion follows from Gronwall’s Lemma, and lemmas
3.7 and 3.8. ]

Finally, in order to conclude maximum norm estimates, we introduce Green function
8,G" € Uy, and pre-Green function 8,G* € H}(I):

(@)  a(8,Gh, vp) = Bup(2), Vup € Up;
(b)  a(8,G%, v) = 8, Py(2), Wve HII).

where Py,: L?(I) — Uy, is L? projection operator, and we have the following (see[11])
1Pitlag < Cllullg, s=0,1, 2<q< oo. (3.13)

(3.12)

Lemma 3.10"") For Green functions defined in (3.12), we know

(@) [18:G; — 3Gl 1 + hl|8:GE 1 + 118:G3 o, < C;

®) Jo.GH<c. (3.14)

4. MAIN REsuULTS

We next demonstrate a superconvergence results of up — V,*u.

Theorem 4.1 Under the conditions of lemma 3.9, for h sufficiently small, we can
deduce

€l < CR2{[u(0)ll2,3p + llull23p}, 2<p < oo (4.1)

Proof. (i) Let us consider the case of 2 < p < 0.

We now introduce an auxiliary problem . Denote ¢ to be the derivative of ¢ and
let ® € H}(I) be the solution of

a(v, ®) = —(v,¢z), ve HI), (4.2)
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and there is a priori estimate
4
12l < Cliglloy, P = — (4.3)
By virtue of Green formula , (2.6), and (3.8'),

€y 9) a(§, @)
a’(§1 Rh(I))
di(€, Rp®) + a*(§, I} Rp®)
di (¢ , Rp®) — (& + me — £(0) — n:(0), LRy ®) (4.4)
- / c*(&, I} Rp®)dr
0
= L+ 1L+ 1.
Now it suffices to estimate each term in the above.
Noting that lemmas 3.5 and 3.4, and |Rp®||1pr < C||®]|1p, We easily get
| < Chliglhpl|Ra®@ll1p
< ChllElhpl®@lly

[T

and

¢
L1 <C [ ehpdrielhy
For I, from Sobolev’s imbedding inequalities, we have

1Ll < (&l + 16O DRI + (Inellop + I7:(0)llop) IR0
< C(l&l + 1€0) 11 + lmellop + IO lop) 1Bl

Combining the estimates of I; — —Is, we obtain also by (4.3) that
C sup |(£CE) ¢)|

peL?’ l#llo,p )
Ch€l1p + CLlEN + 1€ 0) 1 + lmellop + Ime(O)llop} + C/O 1€ll1pd7

By letting h sufficiently small such that Ch < %, the results for 2 < p < oo now follows
by Gronwall’ Lemma and lemmas 3.7-3.9.

(ii) Let us next consider the case of p = .

Applying the definition (3.12a) of Green function, we have

0.6() = ol60.GY)
— 4(6,0:6Y) - / ¢ (€ T00,GM)dr — (& + 1 — £(0) — me(0), T0,GY)

¢ t
= dy(£,8.G%) ‘/0 [da(€,8.G1) — (€, 8.G1))dr —/0 c(¢,0,G - 8,G})dr

t
- [ ele 0.6 - (6 +m = 6(0) - (0, T0.62)
0
SIS

€, <

IA
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Now we proceed to estimate these J; one by one.
From lemmas 3.5 and 3.3, and (3.14a), we get

|1l < Chll€lhllo:GEll < Cliglh,

t t
Ll < © /O l¢lhdr < C /0 €l oodr,

and

sl < / e llood |07 — B:GPl1 4

/ 1€ s adr

As for Jy, it follows from (3.12b), by integration by parts and (3.14a), that
a 0 b o¢ o
a0 = 11 o0 B o6 [ e S 0.0l

a

1 [ w0 2880 oo (el 7 0.0

a(x,t)

IA

[ [a(at)%(‘“(‘”’”f) a2 (@800 0 (o.61)dayar]

oz a(z,t) oz " a(z,t)
= // B a(zt ( ))5]8ded7
[0 p(‘”(‘“ ars [ [ 2 ((f )¢lo.Gdzdr
< 0 [ elloetr +0 [ el ondrlo.G2log
<

t
c /0 1€l 0dr

Lastly, it is easy to see , by Sobolev’s imbedding inequalities and (3.14b), that

sl < CQl&l + limell + (O + IIme(©)) D119
< C(l€el + lImell + 1160l + llm (0D,

Combining the estimates of J; — —.J5, we have

1€l11,00 < CUENL + 1€l + limell + 1€:(O) 1 + e (ONI) + C/O [1€1l1,00dT-

which together with Gronwall’s Lemma , and lemmas 3.7 — —3.9 completes the proof
of p = oo.
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Finally, We can deduce the L? and WP norm error estimates of u — up, by using
I€llop < Clléll1p and lemma 3.7. O

Theorem 4.2 Under the conditions of theorem 4.1, we can conclude that

(@) fu—unlop < CRIu(O)loap+ lulaagh, 2<p <00,y
(©  llu—unlhp < Ch{lu(0)ll23p + llull2sp}, 2<p < oo '
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