• Title/Summary/Keyword: One-Class Support Vector Machine

Search Result 63, Processing Time 0.03 seconds

Topic Classification for Suicidology

  • Read, Jonathon;Velldal, Erik;Ovrelid, Lilja
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2012
  • Computational techniques for topic classification can support qualitative research by automatically applying labels in preparation for qualitative analyses. This paper presents an evaluation of supervised learning techniques applied to one such use case, namely, that of labeling emotions, instructions and information in suicide notes. We train a collection of one-versus-all binary support vector machine classifiers, using cost-sensitive learning to deal with class imbalance. The features investigated range from a simple bag-of-words and n-grams over stems, to information drawn from syntactic dependency analysis and WordNet synonym sets. The experimental results are complemented by an analysis of systematic errors in both the output of our system and the gold-standard annotations.

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

Emotion Classification Using EEG Spectrum Analysis and Bayesian Approach (뇌파 스펙트럼 분석과 베이지안 접근법을 이용한 정서 분류)

  • Chung, Seong Youb;Yoon, Hyun Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper proposes an emotion classifier from EEG signals based on Bayes' theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.

One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal (단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류)

  • Cho, Min-Young;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

Fault Diagnosis Management Model using Machine Learning

  • Yang, Xitong;Lee, Jaeseung;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Based on the concept of Industry 4.0, various sensors are attached to facilities and equipment to collect data in real time and diagnose faults using analyzing techniques. Diagnostic technology continuously monitors faults or performance degradation of facilities and equipment in operation and diagnoses abnormal symptoms to ensure safety and availability through maintenance before failure occurs. In this paper, we propose a model to analyze the data and diagnose the state or failure using machine learning. The diagnosis model is based on a support vector machine (SVM)-based diagnosis model and a self-learning one-class SVM-based diagnostic model. In the future, it is expected that this model can be applied to facilities used in the entire industry by applying the actual data to the diagnostic model proposed in this paper, conducting the experiment, and verifying it through the model performance evaluation index.

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

Credit Card Bad Debt Prediction Model based on Support Vector Machine (신용카드 대손회원 예측을 위한 SVM 모형)

  • Kim, Jin Woo;Jhee, Won Chul
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.233-250
    • /
    • 2012
  • In this paper, credit card delinquency means the possibility of occurring bad debt within the certain near future from the normal accounts that have no debt and the problem is to predict, on the monthly basis, the occurrence of delinquency 3 months in advance. This prediction is typical binary classification problem but suffers from the issue of data imbalance that means the instances of target class is very few. For the effective prediction of bad debt occurrence, Support Vector Machine (SVM) with kernel trick is adopted using credit card usage and payment patterns as its inputs. SVM is widely accepted in the data mining society because of its prediction accuracy and no fear of overfitting. However, it is known that SVM has the limitation in its ability to processing the large-scale data. To resolve the difficulties in applying SVM to bad debt occurrence prediction, two stage clustering is suggested as an effective data reduction method and ensembles of SVM models are also adopted to mitigate the difficulty due to data imbalance intrinsic to the target problem of this paper. In the experiments with the real world data from one of the major domestic credit card companies, the suggested approach reveals the superior prediction accuracy to the traditional data mining approaches that use neural networks, decision trees or logistics regressions. SVM ensemble model learned from T2 training set shows the best prediction results among the alternatives considered and it is noteworthy that the performance of neural networks with T2 is better than that of SVM with T1. These results prove that the suggested approach is very effective for both SVM training and the classification problem of data imbalance.

Simultaneous Optimization of Gene Selection and Tumor Classification Using Intelligent Genetic Algorithm and Support Vector Machine

  • Huang, Hui-Ling;Ho, Shinn-Ying
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.57-62
    • /
    • 2005
  • Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.

  • PDF

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.