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ABSTRACT: Microarray gene expression profiling
technology is one of the most important research topics in
clinical diagnosis of disease. Given thousands of genes,
only a small number of them show strong correlation with a
certain phenotype. To identify such an optimal subset from
thousands of genes is intractable, which plays a crucial role
when classify multiple-class genes express models from
tumor samples. This paper proposes an efficient classifier
design method to simultaneously select the most relevant
genes using an intelligent genetic algorithm (IGA) and
design an accurate classifier using Support Vector Machine
(SVM). IGA with an intelligent crossover operation based
on orthogonal experimental design can efficiently solve
large-scale parameter optimization problems. Therefore, the
parameters of SVM as well as the binary parameters for
gene selection are all encoded in a chromosome to achieve
simultaneous optimization of gene selection and the
associated SVM for accurate tumor classification. The
effectiveness of the proposed method IGA/SVM is
evaluated using four benchmark datasets. It is shown by
computer simulation that IGA/SVM performs better than
the existing method in terms of classification accuracy.

1 INTRODUCION

Microarray gene expression profiling technology is one
of the most important research topics in clinical diagnosis of
disecase. The practical applications of microarray gene
expression profiles include management of cancer and
infectious diseases [1]. The normal cells can evolve into
malignant cancer cells through a series of mutation in genes
that control the cell cycle [2]. However, given thousands of
genes, only a small number of them show strong correlation
with a certain phenotype [3]. To identify such an optimal
subset from thousands of genes is intractable, which plays a
crucial role when classify multiple-class genes express
models from tumor samples. How to design an accurate
tumor classifier with a smallest subset of genes from
microarray gene expression data is investigated in this
paper.

Generally, feature selection methods can be categorized
into two classes: filter and wrapper. For the filter approach,
Golub et al. [4] and Furey et al. [5] employed an individual
gene ranking score and a weighting factor to perform gene
selection prior to classification. Liu et al. [6] proposed a
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feature selection method which combines top-ranked,
test-statistic, and principle component analysis (PCA) in
conjunction with ensemble neural networks to improve
classification. Zhou and Mao [7] suggested a filter-like
evaluation criterion, called LS Bound measure, which
provides gene subsets leading to more accurate
classification. The wrapper approach involves the
computation overhead of evaluating candidate gene subsets
by executing a selected classification algorithm on the
dataset represented using each gene subset under
consideration. Li et al. [8] proposed a hybrid method of the
genetic algorithm (GA) based gene selection and k-nearest
neighbor classifier (GA/KNN) to assess the importance of
genes for classification.

Support Vector Machine (SVM) [9], a supervised
machine learning technique, is one of the methods
successfully applied to cancer diagnosis problems in the
previous studies [5], [7], [10]-[14]. To build an efficient and
effective model for classification, it is indicated that SVM
performs better than some existing classification algorithms
[7]. Statnikov er al [15] investigated classification
algorithms which can handle multiple classes and a large
number of variables, and compared multi-category SVM to
Neural Networks and K-Nearest Neighbor classifier. The
results indicate that the multi-category SVM is the most
effective classifier for tumor classification

Most of the above-mentioned methods except
GA/KNN [8] comprise two separated stages: gene selection
and classifier design. To advance the classification
performance, it is better to take the two stages into account
simultaneously [16], [17]. Liu er al. [16] proposed a
PCA-based two-class classifier. Ooi and Tan [17] proposed
a GA/MLHD (maximal likelihood)-based methodology for
multi-class prediction using gene expression data.

This paper proposes an efficient classifier design
method to simultaneously select the most relevant genes and
the parameters of SVM using an intelligent genetic
algorithm (IGA) for designing an accurate tumor classifier.
IGA is a specific version of intelligent evolutionary
algorithms [18] which can efficiently solve large-scale
parameter optimization problems. Some of the IEA-based
classifier design methods can be referred to [19]-[21].
Therefore, the parameters of SVM as well as the binary
parameters for feature selection are all encoded in a
chromosome to achieve simultaneous optimization of
feature selection and SVM model. IGA with an intelligent



crossover operation is efficient in solving the resultant
optimization problem with a large number of parameters.
The effectiveness of the proposed method IGA/SVM is
evaluated using four benchmark datasets: 9 Tumors,
14_Tumors, Brain_Tumorsl, and Brain Tumors2 [ ]. It is
shown by computer simulation that IGA/SVM performs
better than the existing method | ] in terms of classification
accuracy with the same number of selected features.

2 Support Vector Machine

Support Vector Machine (SVM) is a very popular
method to deal with classification, prediction, and
regression problems. Various SVMs introduced by Vapnik
and other co-workers [9], [22] are powerful classifiers. For
the binary SVM, the training data consist of » pairs (x;, y1),
(X2, ¥2)s+ <> (Xny ¥o), with x;,e R™ and y,e{-1,1},i=1,2, ..., n.
The standard SVM formulation [23] is as follows:

n
min Iw'w+ C; £, subject to (1)
yiw g +b)21-E, £20,i=1,..., n,

where weR™ is a vector of weights of training instances; b
is a constant; C is a real-valued tradeoff (cost) parameter; &;
is a penalty parameter; and ¢ is to map x; into a higher
dimensional space. The SVM of (1) is called a linear kernel
SVM when ¢x;)= x;, The SVM finds a linear separating
hyperplane with the maximal margin in the higher
dimensional space. C > 0 is the penalty parameter of error
term. The SVM of (1) is called a nonlinear SVM when ¢
maps x; into a higher dimensional space.

For the nonlinear SVM, the number of variables w can
be vary large or even infinite, so it is very difficult to solve
using (1). The general method is to use the following dual
formulation:

|
min EaT Qa—e'a subjectto o)
a

ya=0, 0<;<C, i=1,..., n,
where ¢ is the vector of all ones, C>0 is the supper bound, 0
is an nxn positive semidefinite matrix, Q; = y; y; K(x; x;),
and K(x; x) =d(x) "¢(x) is the kemel function. Some

2
commonly-used kernel functions are: e_rix'_x’ ” (Radial
basis function), (x;” xj/y+b)d (Polynomial), and tanh(yx,” x+0)
(sigmoid), where y, d and & are kernel parameters. The
number of variables in (2) is the size n of the training
dataset which is smaller than the dimensionality of ¢(x).
Given w and b, one can classify an instance x using the

decision function is Sgn(z yio, K(x,,x)+b).
i=1

Chang and Lin [24] develop a software tool LIBSVM
(Library for Support Vector Machine) for support vector
classification, regression and distribution estimation.
LIBSVM uses the “one-against-one” approach [25] for
multiclass classification. In the ome-against-one approach,
k(k-1)/2 classifiers are established where £ is the number of
classes. The classifiers between each pair of £ classes are
optimized using the following dual formulation:

Irllin %(wi'j Yw +C Zé‘:j subject to 3)
’ t
Y OB 2 1-8, if y, =i
W) g+ <-1+&, iy, =)

£l >0,

After solving the optimization problem using (3),
k(k-1)/2 decision functions can be obtained. To predict a
class label of a given instance x, the prediction for each of
the k(k-1)/2 classifiers is calculated using a voting strategy
[8]. If there is a class, say j, that receives the largest number
of votes, the instance x is assigned to class j, where a tie is
broken randomly. One advantage of using this method is
that each classifier is easy to train since only the binary
SVM is needed. Another approach to multiclass
classification is called “one-against-all”. In this approach, £
models of SVM are established. For each class j, the SVM
is trained using all the instances in the class j as positives
and the rest of instances as negatives. Previous research has
shown that one-against-one outperforms one-against-all for
multiclass classification [28].

3 The proposed Method

The proposed hybrid method IGA/SVM simultaneously
selects the most effective genes and control parameters of
SVM using IGA, and designs an accurate SVM classifier
for tumor classification.

3.1 Gene Expression Data

Consider the training data {(x,,),) | x.€X, y;€?, i=1,...n}
where X is a vector space of dimension m and Y is a finite
set of tumor class labels. The gene expression data be
formulated as the following matrix G:

gene, gene, A geney
N X Xigo e X
Yo X Xy e X
G= " ©)

yn xnl xn2 b xnm

where x; is the measurement of expression level of the jth
gene for the ith pattern and y; is the tumor class label, j=1,...,
m, i=1,...n. Microarray datasets are characterized by a small
number (#) of patterns and a large number (i) of genes for
each pattern. Of the thousands of genes, only a small
number of them show strong correlation with a certain
phenotype.

The problem of feature selection can be formally
addressed as follows. From the given m features, select / «
m feature that give the smallest expected generalization
error of tumor classification.

3.2 The used SVMSs model

The formulation in Section 2 can take nonlinearly
separable cases into account by letting C be finite values.
SVM has shown good performance in data classification
that depends on tuning of several parameters. The
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parameters affect the generalization ability. The basic
approach to SVM classification may be extended to allow
for nonlinear decision surfaces. For this, the input data are
mapped into a high dimensional space through a nonlinear
mapping function which has effect of spreading the
distribution of the data points in a way that facilitates the
fitting of a linear hyperplane. The classification decision
function is as follows:

n
Sgn(z aiyiK(xi s JC) + b)
i=1
@
where o;, i = 1,..,n, are Lagrange multipliers. The
magnitude of «; is determined by the parameter C and lies
on a scale of 0-C [28]. The kernel used must meet Mercer’s
condition [23] and RBF kernels will be adopted as a default
throughout the paper. In the RBF kernels function,

kemyee T

&)
where vy is the parameter controlling the width of the
Gaussian kernel. It has been proved [29] that one can
classify any consistent training set with zero errors by using
a sufficiently large value of y. Moreover, we apply nonlinear
kernel to solve classification problems, so we need to select
the cost parameter C and kernel parameter y.

Parameters of the classification algorithm [15] were
chosen by nested cross validation procedures to optimize
performance. Statnikov et al. construct SVM with RBF
kernel using the following ranges for optimization of SVM
parameters: cost C ={0.0001, 0.01, 1, 100} and values of y
={0.0001, 0.001, 1}. In this paper we extended ranges for
optimization of SVM parameters: cost C ={0.0001><2d,
0.001x2%, 0.01x2, 0.1x27, 1x2%, 10x2% 10027} and values
of y ={0.0001x27, 0.001x2% 1x2%, d=1, 2, 3. In order to
select the optimal values of parameters, they are encoded
into chromosomes of IGA. We can represent this search
space by a positive integer encoding where the integer value
indicates the selection of the parameters at the
corresponding sequence position.

3.3 Chromosome representation and fitness
function

Let S be the set of parameters {g,..., g, c, r }. The
parameter g;e[1, m] is the index of the selected gene, which
are used for feature selection. The parameters ce {1, 2,... ,
21} and r € {1, 2,..., 9}, which are used select an effective
SVM model. All the parameters are encoded into a
chromosome using integer values, as shown in Fig. 1.
Fitness value guides IGA to choose offspring for the next
generation from the current parents. If S represents the set of
parameters to be evolved by IGA, then the fitness function
F(S) is to maximize classification accuracy.

e lee [ = g Je r ]
[ /
~
gene model SVM model

Fig. 1. Chromosome representation.

3.4 The proposed method IGA/SVM

The main power of IGA arises from intelligent
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crossover based on orthogonal experimental design (OED)
[30]. In the crossover operation of the conventional GA,
two parents generate and test two chromosomes using a
random combination of their chromosomes, and the best
two chromosomes among the four chromosomes are
selected as the children using an elitist strategy. In IGA, the
generate-and-test search for children using a random
combination of GA is replaced with a systematic reasoning
search method using an intelligent combination. The
intelligent crossover with OED can economically estimate
the contribution of individual genes to a fitness function and
consequently pick up the better one of two parents to form
chromosomes of children.

It is well realized that the parameters g representation
to the same column in the matrix G which are feature subset.
A given feature subset as an input and return the estimated
generalization performance of the learning machine as an
evaluation of feature subset. It needs to be repeated for each
feature subset taken into consideration. We should leave out
the parameters with identical genes between two
chromosomes before we assign the factor in OED. The
repair procedure can avoid producing the unreasonable
solutions, as shown in Fig. 2.

P, and P, both chromosomes.

P: §75.145]31]95]10[7
P, 9517 16612

U

P, J75]45|31]95|10{7 |
P, 0517 166]12 5biasrkhe
—

OB EET

K 12{53]66]75]95

repair.

7 175|95§410)31 45

7 [75|95]12(53 (66
| R
Set P, and P, for new order

P, 7 [75]95L10(31]45 §s5)4
P, W7 [75]932]53]66 k6|4

Perform IC with P, and P,.

Fig. 2. The repair procedure.

Once the repair procedure is done, the intelligent
crossover (IC) can be easily implemented by referring the
reference [18]. The used IGA with the proposed
chromosome encoding and SVM classifier is described as
follows:

Step 1: Initialization: Feasible chromosomes of IGA are
randomly generated where each gene g; is unique in
a chromosome.

Step 2: Evaluation: According to the selected subset of
genes, establish the SVM classifier using training
data: n pairs (x1, ¥1), (X2, Y2)seers (Xn, Va), Where
xeR, ye{l, .., k), i=1,2, ..., n, and k is the
number of tumor classes. Decode the parameters
and set the SVM model. Using the » pairs vectors
and SVM model calculate the fitness value.
Generate an additional individual /4., which is the
same as the best individual in the population.

Step 3: Selection: Use the simple ranking selection that
replaces the worst Pi-N,,, individuals with the best



Py N, individuals to form a new population, where
Pq is a selection probability.

Step 4: Crossover: Randomly select P.'N,,, individuals J;
(=12, ..., P:N,y) to perform IC, where P, is a
crossover probability, NV, is population size. Repeat
the following steps for i=1,2, ..., PNy,

4a) Use Ip., and J; as parents, which will produce
two children I, and I¢;.
4b) Repair: Reorder the two I, and /; individuals.
Compare /., with I, there are two parts
to be obtained. One part is same genes
B;, and another part is different genes B,.
4c) B, is assigned to the factors in ODE. Two
children /-, and /., are produced after to
perform IC.

4d) Replace I, and J; with the best and the second
best individuals, respectively, among /i, 1

I¢; and I, according to fitness performance.

Step 5: Mutation: Randomly change P, N,,, genes in each
chromosome, which constraint is same as
initialization. P,, is mutation probability.

Step 6: Termination test: If a prespecified condition is met,
stop the algorithm. Otherwise, go to Step 2.

4. Experimental Results

4.1. Data set

In this section, IGA/SVM is evaluated by four
datasets: 9 _Tumors, 14_Tumors, Brain_Tumorsl, and
Brain_Tumors2. The datasets are described in Table 1. The
expression genes were excluded from the analysis to reduce
the amount of noise in the datasets [32][33]. The four
multicategory datasets are available for download from [34].
The four datasets had 4-26 distinct diagnostic categories,
50-308 patients, and 5920-15009 genes.

We relied instead on standard normalization and data
preparatory steps performed by authors of the primary
dataset studies. Moreover, we performed a simple rescaling
of gene expression values to be between —1 to 1 for
speeding up SVM training.

The summary of application in [15], the four datasets in
Table 1 are most challenging, We experimented on these
challenging datasets [15] to shown that our approach is
practicable and efficient.
Table 1. The four tumor-gene express datasets are
evaluated in this paper.

dataset name distinct genes patients
diagnostic
categories
9 Tumors 9 5726 60
14 Tumors 26 15009 308
Brain Tumorsl 5 5920 90
Brain Tumors2 4 10367 50

4.2 Experiments

The parameters of IGA are as follows: population size
Nyop = 50, crossover rate P, = 0.5, selection rate P, = 0.2,
and mutation rate P, = 0.1 The stopping condition is 50
generations of IGA. For IGA/SVM, the classification
accuracy for each dataset is calculated from results of

10-fold cross-validation. In the experiments, the number / of
selected features is set to 10, 20, ..., 100. Comparison
between two methods in terms of accuracy is shown in
Tables 2-5. However, IGA/SVM outperforms MC-SVM.

Table 2. Results with 9_Tumor

Dataset: 9 Tumor

Number of Accuracy
Selected gene(/) MC-SVM  IGA/SVM
10 68.71% 90%
20 74.44% 93.33%
30 68.98% 88.33%
40 77.09% 96.67%
50 75.66% 95%
60 75.66% 95%
70 76.55% 93.33%
30 77.66% 95%
90 78.27% 96.67%
100 77.48% 96.67%
wins 0 10

Table 3. Results with 14_Tumor

Dataset: 14 Tumor

Number of Accuracy
Selected gene(/) MC-SVM  IGA/SVM

10 39.11% 57.46%
20 49.72% 66.83%
30 52.60% 70.41%
40 56.28% 72.03%
50 57.88% 74.63%
60 57.70% 77.88%
70 57.65% 80.16%
80 60.09% 80%

90 60.06% 80.81%
100 61.84% 82.76%

wins 0 10

Table 4. Results with Brain Tumorsl

Dataset: Brain Tumors]

Number of Accuracy
Selected gene(/) MC-SVM  IGA/SVM
10 68.71% 100%
20 74.44% 96.67%
30 68.98% 98.89%
40 77.09% 98.89%
50 75.66% 100%
60 75.66% 98.89%
70 76.55% 98.89%
80 77.66% 98.89%
90 78.27% 98.89%
100 77.48% 98.89%
wins 0 10

-60-



Table 5. Results with Brain_Tumors2
Dataset: Brain_Tumors]

Number of Accuracy
Selected gene(/) MC-SVM  IGA/SVM
10 39.11% 100%
20 49.72% 100%
30 52.60% 100%
40 56.28% 100%
50 57.88% 100%
60 57.70% 100%
70 57.65% 100%
80 60.09% 100%
90 60.06% 100%
100 61.84% 100%
wins 0 10

The Statnikov et al. (2004) have mentioned varieties
of experiments. The best accurate results for the four
datasets: 9 Tumors, 14 Tumors, Brain Tumorsl, and
Brain_Tumors2 are 74.86%, 76.60%, 92.67%, and 85.67%,
respectively. The best results of IGA/SVM in Tables 2~5 is
more accurate than the result of MC-SVM in [15]. The
comparison is shown in Table 6.

Table 6. Comparison of the two approaches using the best

results from Tables 2-5.
dataset name MC-SVM IGA/SVM
9_Tumors 74.86% 96.67%
14_Tumors 76.60% 82.76%
Brain_Tumorl 92.67% 100%
Brain_Tumor2 85.67% 100%
wins 0 4
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