• Title/Summary/Keyword: One step manufacturing process

Search Result 84, Processing Time 0.025 seconds

Development of Automatic Bundle Machine for Vegetables(I) : Mechanism Design (채소 자동결속기의 개발(I) : 메커니즘 설계)

  • Kim, Yong-Seok;Park, Te-Pyo;Kim, Jea-Jun;Park, Sung-Ho;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.207-213
    • /
    • 2009
  • The bundling process is the final step in vegetable manufacturing, however, the process is a little difficult to be automatized, because vegetable has the physical properties of roughness, softness, and fragility etc. In this paper, we proposed an automatic bundling mechanism for vegetable based on the heat melt sticking. The proposed mechanism consists of three modules, one module is the moving part for aligning of the vegetable shape and adjusting of the vegetable tension, second module is the arm driving part for the vegetable binding and the band roll releasing, and third module is band joining, band cutting, and band feeding part for the vegetable binding continuously. Through this research, Using the SMO(SimDesigner Motion) module, we optimize condition of mechanical movement of the bundling mechanism. This bundling system designed in order to binding 288 bundle/hour.

Design Alterations of a Packing Box for the Semiconductor Wafer to Improve Stability (Wafer Packing Box 안정화 설계)

  • Yoon, Jae-Hoon;Hur, Jang-Wook;Yi, Il-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.62-66
    • /
    • 2022
  • Semiconductor is one of the most internationally competitive areas among domestic industries, the major concern of which is the stability of the wafer manufacturing processes. The packaging process is the final step in wafer manufacturing. Problems in the wafer packaging process cause large losses. The vibrations are supposed to be the most important factors for the packaging quality. In this study, the structure of a packaging box was analyzed through experiments and computer simulations, and further the effects of design alterations to suppress the vibrations have been investigated. The final result shows that the vibrations can be reduced substantially to improve the stability of the structure.

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.

Multistage Cold Forging Process Design of Al6082 Considering Forming Limit (Al6082의 가공한계를 고려한 냉간단조 공정설계)

  • Ann, Ku-Hee;Kang, Jong-Hun;Heo, Su-Jin;Shin, Tae-soo;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.93-99
    • /
    • 2020
  • Recently, as the weight reduction of vehicles has been actively progressed, parts developed using aluminum 60XX series from existing steel materials are increasing. In this paper, the bushing used for the front frame rail, which is one of the parts for fixing engines and other parts in automobiles, was changed to an aluminum material of the Al60XX series, and it was intended to be produced by applying of cold forging method. The bushing is a part that secures the engine frame, and in order to produce it by cold forging, the molding limit is predicted through process design, and a multi-stage process is designed through finite element analysis. In addition, in order to verify the feasibility of the designed forging process, the limits of the multi-step process were verified based on the Cockcroft Latham theory, and the crack and overlap of the actual forging work were predicted and improved.

A Study on Tooth Profile Modification of Planetary Reducer for 120kW Class Monorail (120kW급 모노레일용 유성기어감속기의 치형수정에 관한 연구)

  • Jeong, Yeong-Sik;Kim, Nam-Kyung;Xu, Zhezhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.195-200
    • /
    • 2012
  • In this study, parameters and requirements of an 120kW class monorail planetary gearbox was analysed and the adaptive planetary gearbox design was selected. The specification of the sun gear, planetary gear and carrier was set and the profile & lead was optimized. The mechanical efficiency of the optimized one and the original one was observed. Dynamo-tester system was used to observe the mechanical efficiency of the planetary gearbox. A dynamo unit was connected with the planetary gearbox which straightened through the motor by a coupling. The standard tooth shape planetary gearbox and modified tooth shape planetary gearbox were used as test pieces and the rotation speed was set from 600 to 6000rpm with 600rpm, 2.5min one step. In order to check the mechanical efficiency of the planetary gearbox, the tests were done as follows. 1) The power loss between driving motor and dynamo tester. 2) Temperature variation by different rotation speeds. 3) Noise variation by different rotation speeds.

Copper thickness and thermal reliability of microvias produced by laser-assisted seeding (LAS) process in printed circuit board (PCB) manufacture

  • Leung, E. S.W.;Yung, W. K.C.
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.69-92
    • /
    • 2001
  • The laser-assisted seeding (LAS) process has potential to replace conventional electroless copper plating in Printed Circuit Board (PCB) manufacturing since it combines the steps of laser drilling and plating into one single process. In the LAS process, the single extra LAS step can metallize a microvia. Thus, the process steps can be greatly reduced and the productivity enhanced, but also the high aspect ratio microvias can be metallized. The objectives of this paper are to study the LAS copper thickness within PCB microvias and the thermal reliability of the microvias produced by this process. It was found that results were satisfactory in both the reliability test and also the LAS copper thickness which both comply with IPC standard, the copper thickness produced by the LAS process is sufficient for subsequent electro-plating process. The reliability of the microvias produced by LAS process is acceptable which are free from any voids, corner cracks, and distortion in the plated copper.

  • PDF

Development of Thermal Imprint System for Net-Shape Manufacturing of Multi-layer Ceramic Structure (세라믹 정형 가공을 위한 성형기 개발)

  • Park, C.K.;Rhim, S.H.;Hong, J.P.;Lee, J.K.;Yoon, S.M.;Ko, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.401-404
    • /
    • 2008
  • In the present investigation, a high precision thermal imprint system for micro ceramic products was developed and the net-shape manufacturing of multi-layer ceramic reflector for LED (Light Emitting Diode) was conducted with a precision metal die. Workpiece used in the present investigation were the multi-layer laminated ceramic sheets with pre-punched holes. The cavity with arbitrary angle was formed on the circular and rectangular holes of the ceramic sheets. During the imprinting process, the ambient temperature of the imprint system was kept over the transition temperature of the ceramic sheet and then rapidly cooled. The results in this paper show that the present method can be successfully applied to the fabrication of very small size hole array for ceramic reflector in a one step operation.

  • PDF

A Study on the Change of Suface Characteristics by plane suface Rolling(l) (평면 Rolling에 의한 표면특성 변화에 관한 연구(l))

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.1-5
    • /
    • 1997
  • The plane surface rolling, one of the plastic working process, good surface condition due to increase of surface roughness and hardness. It is well known that mechanism of surface rolling depends upon rolling conditions such as rolling speed, contact pressure, step length of rolling, the shape of roller and mechanical properties of material. In this study, the optimal value of the above parameter on the surface roughness were investigated by using the rolling tool with NACHI 6000ZZ ball bearing outer races on machine structure carbon steel[SM45C]

  • PDF

Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF