• Title/Summary/Keyword: On-site Transportation

Search Result 412, Processing Time 0.022 seconds

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

A software tool for integrated risk assessment of spent fuel transportation and storage

  • Yun, Mirae;Christian, Robby;Kim, Bo Gyung;Almomani, Belal;Ham, Jaehyun;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.721-733
    • /
    • 2017
  • When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this model.

The assessment of the adsorption and movement of Pb in mixed soil with food compost using model (모델을 이용한 음식물퇴비 혼합토양에서의 Pb 흡착 및 이동성 평가)

  • Joo, You-Yoen;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 2008
  • Food compost, having a higher organic contents than soil, could be an alternative material to prevent the proliferation of heavy metals contamination in soil. In this study we used a convection-dispersion local equilibrium sorption model(CDE) and a two-site non-equilibrium sorption model to find the effects on the adsorption and transportation of Pb by mixing food compost with soil and we also tried to find the effect of velocity and concentration of the injected solution on the characteristics of Pb. We measured Pb concentrations in injection-liquid and in effluent, and then applied them to CXTFIT program. As a result of column experiments, some parameters(D, R, ${\beta}$, ${\omega}$) used in two-site non-equilibrium adsorption model were obtained. Characteristics of Pb adsorption and transport were analyzed using the parameters(D, R, ${\beta}$, ${\omega}$) obtained from the CXTFIT program, We could know that mixed soil with food compost showed a higher adsorption capacity from the retardation factor(R) calculated from the breakthrough curve(BTCs) of Pb. Rs of soil and mixed soil are 20.45, 37.45 respectively, indicating that the adsorption and the transportation characteristics could be accessed quantitatively by using of two-site non-equilibrium adsorption model.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

Developing the Accident Injury Severity on a Field of Construction Work Using Ordered Probit Model (순서형 프로빗 모형을 적용한 공사장 교통 사고심각도 분석)

  • Hong, Ji-Yeon;Kim, Kyung-Tae;Lee, Soo-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • The traffic accidents at a construction site, which happen due to construction vehicles' frequent access to a construction site, its subsequent conflicts with ordinary vehicles and pedestrians, and inappropriate installation & management of traffic security facilities, have not many proportions in all traffic accidents, but obviously, the accident damage is quite serious when comparing the level of the fatal per one accident. This research conducted an analysis of traffic accident injury severity using Ordered Probit Model in relation to 241 traffic accident cases that occurred caused by construction sites among the traffic accidents that took place in Seoul and Gyeoggi-do region for two years from 2006 until 2007. As a result, the significant variables enough to explain traffic accident injury severity were analyzed to be the state of road surface, linear shape of an accident spot & whether the damaging car belongs to the vehicle for construction, and whether vehicles have access to a construction site at the time of an accident. Through this, this research found out some fact as follows: first, there need to be more aggressive management of the vehicles for construction and a year-round placement of the manpower who can control vehicular access to a construction site. Second, it is necessary to get drivers to recognize the fact that there exists a construction site on the construction section which is on the border of curved roads in advance to prevent a traffic accident, helping to reduce socioeconomic loss & costs incurred by a traffic accident.

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Dynamic Analysis of Tunnel Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 터널 구조물의 동적 해석)

  • Kim, Hyon-Jung;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.101-106
    • /
    • 2005
  • When a underground structure is constructed at the site composed of soft soil, the behavior of a underground structure Is much affected by the motion of soft soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a underground structure such as tunnel at the site composed of soft soil. This paper presents the results of the study on dynamic response of tunnel structures and soil-structure interaction effects. The computer program SASSI was used in seismic analysis of tunnel structures because it is more capable of analyzing dynamic response or structures considering soil-structure interaction. As regards the results, the flexibility of surrounding soil affects dynamic response characteristics of tunnel structures and response of tunnel structures can be amplified.

A Study on Eating Behaviors and Food Preferences of the Workers at Transportation Business in Daegu Areas by Work Site (대구지역 운수종사자의 영업지역별 식행동 특성 및 음식 기호도 조사 연구)

  • 김정숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.4
    • /
    • pp.311-319
    • /
    • 2000
  • This study was to investigate eating behaviors and food preferences of the worker at transportation business in Daegu areas by work site. The survey was performed by questionnaires from July 13 to August 25, 1999 against 353 of males. As a general factor, the subjects of survey were male drivers in their forties to fifties. Their education level was middle school (46.5%) and high school (47.3%) diploma. The subjects were composed of 44.2% of city workers and 55.5% of suburban workers. This study showed that the city workers eat three meals per day with high percentage (92.9%) and a large number of suburban workers (21.3%) eat two meals only. Most of the subjects 782.% responded that their diet life were irregular due to the property of their job. The food preferences of most of workers (94.9%) were Korean food rather than any other foods. Frequency of eating-out was much higher in city drivers than in suburban drivers. They considered taste of food firstly and the prices of food secondly, but the nutritional value of food was considered with a very low percentage (14.7%). Their favorite menu turned out to be the Korean style one-dish food, of those one-dish Koran food, they preferred rice or soup to the noodles. These results suggest that he nutritional education against the workers at transportation business is needed to set the proper menu considering the characteristics of the preference each group of workers.

  • PDF

Current treatment and disposal practices for medical wastes in Bujumbura, Burundi

  • Niyongabo, Edouard;Jang, Yong-Chul;Kang, Daeseok;Sung, Kijune
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Since improper management practices of solid medical waste (SMW) could potentially result in serious health risks and environmental problems, it is very important to properly treat and dispose of the medical wastes. In this study, current practices of SMW management from storage to final disposal stage in 12 health care facilities (HCFs) of Burundi were investigated using the official government reports. The results showed that 75% and 92% of HCFs used uncovered wheelbarrows and trucks for on-site or off-site SMW transportation, respectively, indicating that most transportation equipment and waste workers are not safely protected. The results also showed that 92.8% of SMW (15,736.4 ton) from all 12 HCFs were inappropriately disposed of through uncontrolled land disposal and incineration. If pharmaceutical wastes and discarded medical plastics (29.5% of SMW) can be separated and treated properly, the treatment costs can be reduced and resource savings can be achieved. Raising awareness of healthcare workers and general public about potential health effects arising from improper SMW management, sufficient financial and human resources for the treatment facilities (especially incinerators), and effective regulations and guidelines for transportation and treatment of SWM are some of the major tasks for safe and sustainable medical waste management in Burundi.