• Title/Summary/Keyword: On-site Construction Factory

Search Result 104, Processing Time 0.023 seconds

Development and Evaluation of Fixation Equipment for Transporting Unit Modules

  • Park, Su-Yeul;Kim, Kyoon-Tai;Park, Nam-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.609-618
    • /
    • 2013
  • The unit modular construction system is a building technique in which unit modules are manufactured at a factory and then assembled at the construction site. It has many benefits, including reduction of the construction period and improvement in quality. For this reason, it is utilized for various purposes in Japan and England. While it has been introduced in Korea, there have been few Korean studies conducted on the unit modular system. In particular, little research has been done on the method of safely fixating the unit modules to a truck. Therefore, this study reviewed the fixation methods of unit modules for transport, analyzed the problems, and designed a fixation device for unit modules. In addition, a device for the fixation of unit modules to a truck was developed, and a structural simulation was implemented for a safety test by considering the maximum stress generated during the transport of the unit modules fixed on a truck. When the device for the fixation of unit modules is manufactured based on the results of the structural simulation done in this study, it is expected to aid the development of a more practical fixation device for unit modules.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

A Study on the Necessity of Smart Factory Application in Electronic Components Assembly Process (전자부품 조립공정에서 스마트팩토리 적용 필요성에 대한 연구)

  • Kim, Tae-Jong;Lee, Dong-Yoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.138-144
    • /
    • 2021
  • In the electronic component assembly business, when product defects occur, it is important to track incoming raw material defects or work defects, and it is important to improve suppliers or work sites according to the results. The core task of the smart factory is to build an integrated data hub to process storage, management, and analysis in real time, and to manage cluster processes, energy, environment, and safety. In order to improve reliability through accurate analysis and collection of production data by real-time monitoring of production site management for electronic parts-related small and medium-sized enterprises (SMEs), the establishment of a smart factory is essential. This paper was developed to be utilized in the construction by defining the system configuration method, smart factory-related technology and application cases, considering the characteristics of SMEs related to electronic components that want to introduce a smart factory.

Development of Time-Cost Trade-Off Algorithm for JIT System of Prefabricated Girder Bridges (Nodular GIrder) (프리팹 교량 거더 (노듈러 거더)의 적시 시공을 위한 공기-비용 알고리즘 개발)

  • Kim, Dae-Young;Chung, Taewon;Kim, Rang-Gyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • In the case of the construction industry, the relationship between process and cost should be appropriately distributed so that the finished product can be delivered at the minimum fee within the construction period. At that time, it should be considered the size of the bridge, the construction method, the environment and production capacity of the factory, and the transport distance. However, due to various reasons that occur during the construction period, problems such as construction delay, construction cost increase, and quality and reliability degradation occur. Therefore, a systematic and scientific construction technique and process management technology are needed to break away from the conventional method. The prefab(Pre-Fabrication) is a representative OSC (Off-Site Construction) method manufactured in a factory and constructed onsite. This study develops a resource and process plan optimization system for the process management of the Nodular girder, a prefab bridge girder. A simulation algorithm develops to automatically test various variables in the personnel equipment mobilization plan to derive the optimal value. And, the algorithm was applied to the Paju-Pocheon Expressway Construction (Section 3) Dohwa 4 Bridge under construction, and the results compare. Based on construction work standard product calculation, actual input manpower, equipment type, and quantity were applied to the Activity Card, and the amount of work by quantity counting, resource planning, and resource requirements was reflected. In the future, we plan to improve the accuracy of the program by applying forecasting techniques including various field data.

Load analysis for transporting unit module (유닛모듈 운반시 작용하중 분석)

  • Kim, Kyoon-tai;Jun, Young-Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.200-201
    • /
    • 2015
  • The unit modular method is one in which unit modules are prefabricated at a factory and then constructed at a construction site. That is why an important process, transporting unit module, is added in this method. The purpose of this study is to analyse the load for transporting unit module. The results of the analysis of the driving experimental runs revealed that a maximum load of 15 kN was applied on adapter block type A and a maximum load of 25 kN on adapter block type B. These loads were recorded at the points in the road test when the low-bed trailer was driving through unstable sections of the test such as stopping, restarting, passing over a speed bump or taking a left turn at speed.

  • PDF

Assessment of Quality Assurance in the Lifting and Assembly Phase of Modular Construction: An Importance-Performance Analysis Approach (중요도-성취도 분석을 이용한 모듈러 건축프로젝트 현장설치 및 양중 단계의 품질 관리방안에 관한 연구)

  • Lee, Jeong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.595-605
    • /
    • 2023
  • With the escalating prevalence of modular construction projects, there is a concurrent surge in scholarly and industrial intrigue in this domain, leading to a broadened spectrum of its applications. Modular construction, inherently facilitated by controlled factory settings, boasts the capability to consistently deliver edifices of superior quality. To optimize this advantage, the judicious integration of quality assurance methodologies during the site-specific phases of lifting and assembly is non-negotiable. This research embarked on a survey directed at project stakeholders, aiming to gauge the perceived significance and efficaciousness of prevailing quality preservation and oversight protocols during the aforementioned site stages, subsequently employing the Importance-Performance Analysis(IPA) for data interpretation. The findings elucidated that, while a majority of quality assurance procedures were adeptly executed, perceptual disparities existed among stakeholders regarding certain aspects, prompting recommendations for enhancement. This investigative endeavor lays a foundation, aiding future studies in amplifying the quality assurance cognizance among professionals during modular construction's site-assembly phase.

An adoption of the HFPD measuring system using directional coupler sensors to XLPE cable & accessories (방향성센서를 이용한 고주파 부분방전 측정시스템의 XLPE 케이블 및 접속함 적용)

  • Yu, In-Kee;Kim, Ki-Young;Jeong, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1674-1676
    • /
    • 2002
  • In this paper, High Frequency PD measuring system using directional coupler sensors(DCS) is introduced. Especially the principles of the DCS and characteristics of the system are introduced. Evaluation of this system was carried by an adoption to the test circuit of 345kV XLPE $2000mm^2$ cable and EB-A, EB-G, PIJ, PNJ. In the test a PD measurement was carried out without shieldroom and under the on-line state and in the high frequency range at the remote site from the test object. The test result was satisfactory and this is due to the use of DCS and using a high frequency range and specific filter for radio and TV signal and low pass. This system can be used to the test of a new construction of cable and accessories and measuring of long-term deterioration of cable and accessories. And this will bring us the reliability of a power transmission.

  • PDF

Identification of Factors Influencing the Operability of Precast Concrete Construction Shipment Request Forms

  • Jeong, Eunbeen;Jang, Junyoung;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.145-152
    • /
    • 2022
  • Recently, interest in the precast concrete (PC) construction method has been increasing. The PC construction process consists of i) design, ii) production, iii) transportation, and iv) installation. A PC field manager at the site submits a shipment request form to the factory one to three days before the installation of the PC component. Numerous matters should be considered in writing a shipment request form. Incorrect shipment request forms may cause standby resources, waste of resources, premature work conclusion, or excessive work. These issues can lead to an increase in construction costs, replanning of PC component installation, or rework. In order to prevent such problems, PC component installation should be simulated based on the shipment request form. Accordingly, this study aims to identify factors influencing the operability of shipment request forms for PC construction. To this end, this study derived factors influencing i) initiation of the activity, ii) addition or deletion of activities, and iii) an increase or decrease in the activity execution time. As a result, this study identified flow, the features of PC components, condition of PC components, unloading location, installation location, input equipment and labor, number of anchors, number of supports, weather, strike, and accident. Further studies should verify the factors derived in this study based on focus group interviews.

  • PDF

Study on the Application of Multi-skilled labors to Factory Production Process for Securing Economic Feasibility of Modular Unit (모듈러 경제성 확보를 위한 공장생산 프로세스의 다기능공 적용 방안)

  • Kim, Hakcheol;Hwang, Youngkyu;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • The Construction industry is a labor-intensive industry that its labor cost takes up about 30~40% out of the whole construction cost. However, due to a stereotype that on-site work is a 3D job there is a shortage of the labor forces. Modular construction method is to produce modular units in the plant so that workers could work stably. Also, after delivering the module from plant to the site, there will be only installment to be required that shortens construction duration. Even though the modular market is currently expanding based on military facilities in Korea, its best strengths are not demonstrated well which are shortened construction period and low cost. It also causes labor problem of production due to minimum utilization of the modular construction method. Multi-skilled labor means a technician that is able to perform more than two kinds of work with more than two techniques. Multi-skilled labor can proceed smoothly by figuring out the connectivity between the precedent and following operations. Therefore, this research is to apply the concept of Multi-skilled labors, suggest solutions and allocate manpowers efficiently. As a result, it helps to decrease idle manpowers during the operation and the total labor forces can be saved. Low cost is the original strength of the modular which can stand out so the modular market is expected to expand.