• Title/Summary/Keyword: On-pump

Search Result 3,855, Processing Time 0.029 seconds

Numerical studies on cavitation behavior in impeller of centrifugal pump with different blade profiles

  • Song, Pengfei;Zhang, Yongxue;Xu, Cong;Zhou, Xin;Zhang, Jinya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To investigate the influence of blade profiles on cavitation behavior in impeller of centrifugal pump, a centrifugal pump with five different blade profiles impellers are studied numerically. The impellers with five different blade profiles (single arc, double arcs, triple arcs, logarithmic spiral and linear-variable angle spiral) were designed by the in-house hydraulic design code using geometric parameters of IS 150-125-125 centrifugal pump. The experiments of the centrifugal pump have been conducted to verify numerical simulation model. The numerical results show that the blade profile lines has a weak effect on cavitation inception near blade inlet edge position, however it has the key effect on the development of sheet cavitation in impeller, and also influences the distribution of sheet cavitation in impeller channels. A slight changing of blade setting angle will induce significant difference of cavitation in impeller. The sharp changing of impeller blade setting angle causes obvious cavitation region separation near the impeller inlet close to blade suction surface and much more flow loss. The centrifugal pump with blade profile of setting angle gently changing (logarithmic spiral) has the super cavitation performance, which means smaller critical cavitation number and lower vapor cavity volume fraction at the same conditions.

A Numerical Study on the Performance Analysis of the Mixed Flow Pump for FPSO (수치해석을 이용한 FPSO용 사류펌프 성능해석 연구)

  • Kang, Kyung-Won;Kim, Young-Hun;Kim, Young-Ju;Woo, Nam-Sub;Kwon, Jae-Ki;Yoon, Myung-O
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.12-17
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump (for seawater lifting) by inverse design method and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3$/h. Finite volume method with structured mesh and realized k-${\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head, brake horse power and efficiency of the mixed flow pump are compared with the design data. The simulated results are good agreement with the design data less 3% error.

The Study on the Structure and Performance of Heat Pump Calorimeter (열펌프 열량계 구조 및 성능 특성 연구)

  • Park, Seung Byung;Lee, Sang-Hyeok;Choi, Jinnil;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • The efficiency, reliability and performance of any heat pump unit can only be ascertained after it has been tested and rated. For this reason, specific facilities, equiped with testing plants are built. Heat pump calorimeter is the facilities used by most of these testing facilities in their rating and certification process. The ultimate function of calorimeters is to, control and maintain the constant standard test conditions (indoor/outdoor entering temperatures and flow rate etc) during testing period. In this study, the test standards of heat pump unit and the structure of the calorimeter are surveyed. In addition, this study analyzes the total energy consumption of a water to water heat pump calorimeter. Heat pump calorimeter consumed much energy to excute the heat pump tests. The energy consumption of the calorimeter was higher than the heat pump unit, and it was increased as the heat pump unit capacity decreased.

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

Simulation Analysis on Performance Comparison between R744 and R22 Solar Hybrid Heat Pump (R744와 R22를 적용한 태양열 하이브리드 열펌프의 성능 시뮬레이션 비교 분석)

  • Kang, Byun;Cho, Honghyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • Simulation study of a solar hybrid heat pump using R744 and R22 for residential applications was carried out according to heat pump operating temperature, outdoor temperature and solar radiation. As a result, when the heat pump operating temperature increases from $40^{\circ}C$ to $48^{\circ}C$, the COP of a R744 and R22 heat pump system decrease from 2.15 to 1.7 and from 3.09 to 2.69, respectively. Besides, as the outdoor temperature rises from $3^{\circ}C$ to $11^{\circ}C$, the COP of R744 and R22 heat pump system increase from 1.73 to 2.12 and from 2.73 to 3.02. When the solar radiation increases from 10 to 20 $MJ/m^2$, the collector operating time and collector efficiency of R744 heat pump increase 10.3 times and 50.7%, respectively. The performance of R744 solar hybird heat pump is more sensitive to operation condition compared to that of R22. Besides, the solar heating system is more effective to the R744 heat pump system.

Screw-type Dry Vacuum Pump Technology and Application in Semiconductor Process (스크류 형 건식진공펌프 기술 현황 및 응용)

  • Noh, Myung-Keun;Hwang, Tae-Kyoung;Park, Jea-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.292-301
    • /
    • 2008
  • As the industry requiring clean vacuum condition like semiconductor and display manufacturing expands, importance of dry vacuum pumps has been increased. Screw-type dry vacuum pump, occupying major share with multi-stage roots pump in dry-pump market, has big strength specially in harsh application area accompanying serious by-product accumulation. Recently, development in screw-type pump has been focused on improving energy efficiency. In this article, technology of screw-type dry vacuum pump is reviewed and the requirement for actual industrial application is considered. In addition, the expected evolution for screw-type dry pump in near future is also described.

Optimal Design of Tooth Profile for High-Efficiency Gerotor Oil Pump (지로터 오일 펌프의 성능 향상을 위한 치형의 최적 설계)

  • Kim Jae Hun;Park Joon Hong;Jung Sung Yuen;Son Jin Hyuk;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.28-36
    • /
    • 2005
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications, which are highly accepted by designers. Especially the pump is an essential machine element of an automotive engine to feed lubricant oil. However, related industries do not have necessary technology to design and optimize the pump and paid royalties of rotor profile on an advanced country. Also, gerotor pumps with unsettled design parameters have not been sufficiently analyzed from a theoretical view of design. Therefore, it is still very difficult for the pump designer and manufacturer to decide the specifications for the required gerotor pump by users. In this study, the design optimization has been carried out to determine the design parameters that maximize the specific flow rate and minimize the flow rate irregularity. Theoretical analyses and optimal design of the gerotor oil pump have been performed by mathematical base, numerical method and knowledge of kinematics. An automated design system of the tooth profile has been developed through Auto LISP language and CAD method considering various design parameters. Finally, an optimally designed model for a general type of a gerotor pump has been generated and experimentally verified for the pump performances.

A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine (전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구)

  • Chung, Jae-Woo;Kim, Nam-Ho;Kang, Jung-Ho;Park, Sang-Wook;Lee, Ho-Kil;Choi, Seung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.

An Experimental Study on the Performance Evaluation of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료시스템 연료이송 제트펌프의 성능평가에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Kim, Eui-Soo;Park, Sul-Hye;Lee, Chang-Ho;Lee, Soo-Chul;Choi, Hee-Joo;Lee, Jee-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1143-1150
    • /
    • 2007
  • The fuel transfer characteristics of the jet pump between fuel tanks, which is applied in the smart UAV fuel supply system, were experimentally investigated. The operating conditions of the jet pump were setup to meet the engine requirement according to mission profile, and the jet pump performance was evaluated at those conditions. The pressure ratio and the efficiency of the jet pump were measured with the variation of flow ratio. In addition, the area ratio was taken into the consideration to examine the effect on the jet pump performance. From the evaluation results, the jet pump met the fundamental requirement to transfer fuel with the flow ratio of 2.23. In the case of the jet pump that is focused on the fuel transfer quantity rather than its efficiency, the flow ratio would be adjusted through the variation of area ratio of the jet pump within the permitted limit of pressure ratio.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.