• 제목/요약/키워드: On-orbit

검색결과 1,486건 처리시간 0.026초

위성의 전이궤도 열해석 (TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE)

  • 전형열;김정훈;김성훈;양군호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF

MTF analysis of KOMPSAT I from on-orbit image

  • Jang Hong-Sul;Jung Dae-Jun;Lee Seung-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.604-607
    • /
    • 2004
  • The on-orbit MTF for the electro-optical camera (EOC) of the KOMPSAT I was calculated from sampled image of edge target. The image derived MTF values are smaller than ground measurement values but meet original requirements of EOC. The MTF from MTF compensated image was larger than and ground measurement result.

  • PDF

Orbit determination for the KOMPSAT-1 Spacecraft during the period of the solar maximum

  • Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.71-76
    • /
    • 2005
  • The KOMPSAT-1 satellite, launched into a circular sun synchronous orbit on Dec. 21, 1999, entered its$6^{th}$year of successful operation this year. The purposes of the mission are to collect earth images (6.6 m resolution), multi-spectral images of the ocean, and to collect information on the particle environment of the low earth orbit. For normal operation, KOMPSAT-1 orbits are determined using GPS navigation solutions. However, at the start of the life of KOMPSAT-1, the 11-year solar activity cycle was at a maximum. Solar flux was maintained at this level until 2002, and thereafter reduced to a moderate level by 2004. Thus, the OD (Orbit Determination) accuracy has varied according to the solar activity. This paper presents the degree to which the OD accuracy could be degraded during a high solar activity period compared with that of a (relatively) low solar activity period. We investigated the effect of the use of solve-for parameters such as a drag coefficient ($C_D$), solar radiation coefficient ($C_R$), and the general accelerations ($G_A$) on OD accuracy with solar activity. For the evaluation of orbit determination accuracy, orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. The effect of the use of a box-wing model instead of a constant cross-sectional area is also investigated.

Ground Tracking Support Condition Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter (KPLO) in Lunar Orbit

  • Kim, Young-Rok;Song, Young-Joo;Park, Jae-ik;Lee, Donghun;Bae, Jonghee;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권4호
    • /
    • pp.237-247
    • /
    • 2020
  • The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF

Quick Evaluations of the KOMPSAT-1 Orbit Maneuvers Using Small Sets of Real-time GPS Navigation Solutions

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.196-202
    • /
    • 2001
  • Quick evaluations of two in-plane orbit maneuvers using small sets of real-time GPS navigation solutions were performed for the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large sets of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.

  • PDF

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.349-358
    • /
    • 2017
  • The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.

태양돛 우주선의 궤도천이 기법 연구 (A Study on Orbit Transfer Methods for Solar Sail Spacecraft)

  • 김민규;김정래
    • 한국항공우주학회지
    • /
    • 제41권10호
    • /
    • pp.770-778
    • /
    • 2013
  • 태양돛은 태양복사압을 이용하여 연료소모 없이 우주선에 지속적인 추력을 제공하는 방식으로, 심우주 임무나 지속적인 궤도기동이 필요한 임무에 적합하다. 본 논문에서는 태양돛의 기본 원리를 소개하고 태양중심, 행성중심 궤도에서의 국소최적제어 기법을 연구하였다. 각각의 최적제어 기법에 대한 시뮬레이션을 수행하였다. 핼리혜성 랑데부 궤적을 생성하였으며, 여러 가지 행성탈출 기법을 비교하였다.

정지통신위성의 궤도에 대한 궤도요소의 진화 I -동서 방향의 궤도 보존- (Evolution of the Orbital Elements for Geosynchronous Orbit of Commmunications Satellite, I. East-Station Keeping)

  • 최규홍;박재우;이병선;조중현;이용삼
    • Journal of Astronomy and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.93-102
    • /
    • 1986
  • 정지통신위성을 동서방향으로 궤도 조정을 하기 위해서는 평균경도와 궤도의 이심률에 관해서 동시에 조정하여야 한다. 궤도이심률의 효과는 궤도중심방향의 $e_{c}$$e_{s}$의 위상면상에서 표시되어야 한다. 평균경도와 궤도이심률에 대한 진화도 얻었다.

  • PDF