• 제목/요약/키워드: On-orbit

검색결과 1,481건 처리시간 0.028초

정지궤도 위성의 탑재 궤도 생성 알고리듬 개발 (Development of Onboard Orbit Generation Algorithm for GEO Satellite)

  • 임조령;박봉규;박영웅;최홍택
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.7-17
    • /
    • 2014
  • 본 기술논문은 정지궤도위성의 탑재 궤도 생성 알고리듬 개발에 대하여 다루고 있다. 정지궤도위성 실시간 궤도 생성에 사용되었던 기존 알고리듬의 정밀도를 향상시키기 위한 연구 결과를 제시하였다. 여기서 제시한 알고리듬을 토대로 궤도 오차 요인들의 영향성 분석을 수행하였다. 분석 결과, 초기 궤도 결정 오차가 50 m 이내이고, 지상시스템과 탑재 컴퓨터에서 사용되는 위성위치각 (sidereal oscillator) 오차가 ${\pm}0.0025deg$ 이내로 유지되어야만 궤도 요구조건을 만족함을 알 수 있었다. 본 알고리듬에 대한 탑재코드 개발이 이루어졌으며, 소프트웨어 기반 검증 시뮬레이터를 사용한 성능 검증이 수행되고 있다.

천리안위성 2A호 지구정지궤도위성 궤도결정 (Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite)

  • 김용래;이상철;김정래
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

A RELATIVE REIDEMEISTER ORBIT NUMBER

  • Lee, Seoung-Ho;Yoon, Yeon-Soo
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.193-209
    • /
    • 2006
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. In this paper, extending Cardona and Wong's work on relative Reidemeister numbers, we show that the Reidemeister orbit numbers can be used to calculate the relative essential orbit numbers. We also apply the relative Reidemeister orbit number to study periodic orbits of fibre preserving maps.

IRREDUCIBLE REIDEMEISTER ORBIT SETS

  • Lee, Seoung Ho
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.721-734
    • /
    • 2014
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending our work on Reidemeister orbit sets, we obtain algebraic results such as addition formulae for irreducible Reidemeister orbit sets. Similar formulae for Nielsen type irreducible essential orbit numbers are also proved for fibre preserving maps.

Analysis on Frozen & Sun-synchronous Orbit Conditions at the Moon

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.24.4-24.4
    • /
    • 2011
  • Frozen orbit concept is very useful in designing particular mission orbits including the Sun-synchronous and minimum altitude variation orbits. In this work, variety of frozen and Sun-synchronous orbit conditions around the Moon is investigated and analyzed. The first two zonal harmonics of the Moon, J2 and J3, are considered to determine mean orbital elements to be a frozen orbit. To check the long-term behavior of a frozen orbit, formerly developed YonSei Precise Lunar Orbit Propagator (YSPLOP) is used. First, frozen orbit solutions without conditions to be the Sun-synchronous orbit is investigated. Various mean semi-major axes having between ranges from 1,788 km to 1,938 km with inclinations from 30 deg to 150 deg are considered. It is found that a polar orbit (90 deg of inclination) having 100 km of altitude requires the orbital eccentricity of about 0.01975 for a frozen orbit. Also, mean apolune and perilune altitudes for this case is about 136.301 km and 63.694 km, respectively. Second, frozen orbit solutions with additional condition to be the Sun-synchronous orbit is investigated. It is discovered that orbital inclinations are increased from 138.223 deg to 171.553 deg when mean altitude ranged from 50 km to 200 km. For the most usual mission altitude at the Moon (100 km), the Sun-synchronous orbit condition is satisfied with the eccentricity of 0.01124 and 145.235 deg of inclination. For this case, mean apolune and perilune altitudes are found to be about 120.677 km and 79.323 km, respectively. The results analyzed in this work could be useful to design a preliminary mapping orbit as well as to estimate basic on-board payloads' system requirements, for a future Korea's lunar orbiter mission. Other detailed perturbative effects should be considered in the further study, to analyze more accurate frozen orbit conditions at the Moon.

  • PDF

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

REIDEMEISTER ORBIT SETS ON THE MAPPING TORUS

  • Lee, Seoung-Ho
    • 대한수학회논문집
    • /
    • 제19권4호
    • /
    • pp.745-757
    • /
    • 2004
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Let f : G $\longrightarrow$ G be an endomorphism between the fundamental group of the mapping torus. Extending Jiang and Ferrario's works on Reidemeister sets, we obtain algebraic results such as addition formulae for Reidemeister orbit sets of f relative to Reidemeister sets on suspension groups. In particular, if f is an automorphism, an similar formula for Reidemeister orbit sets of f relative to Reidemeister sets on given groups is also proved.

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

On-Board Orbit Propagator and Orbit Data Compression for Lunar Explorer using B-spline

  • Lee, Junghyun;Choi, Sujin;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.240-252
    • /
    • 2016
  • In this paper, an on-board orbit propagator and compressing trajectory method based on B-spline for a lunar explorer are proposed. An explorer should recognize its own orbit for a successful mission operation. Generally, orbit determination is periodically performed at the ground station, and the computed orbit information is subsequently uploaded to the explorer, which would generate a heavy workload for the ground station and the explorer. A high-performance computer at the ground station is employed to determine the orbit required for the explorer in the parking orbit of Earth. The method not only reduces the workload of the ground station and the explorer, but also increases the orbital prediction accuracy. Then, the data was compressed into coefficients within a given tolerance using B-spline. The compressed data is then transmitted to the explorer efficiently. The data compression is maximized using the proposed methods. The methods are compared with a fifth order polynomial regression method. The results show that the proposed method has the potential for expansion to various deep space probes.