• Title/Summary/Keyword: On-off current ratio

Search Result 356, Processing Time 0.034 seconds

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique (원자층 증착 기술을 이용한 TiO2 활성층 기반 TFT 연구)

  • Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.415-418
    • /
    • 2015
  • In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.

Effects of the length of linkers in metal-azobenzene-metal junction on transmission and ON/OFF ratio

  • Yeo, Hyeonwoo;Kim, Han Seul;Kim, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.499-505
    • /
    • 2017
  • Photoisomerizing molecules which can transform their structure by the light irradiation have great deal for the application of photo-switching devices. And azobenzene is the representive type of the photoisomerizing molecules. It can transform their trans- structures into cis- structure as the light for certain wave lengths they receive. This property shows the potential of ON/OFF switching functionalization which can be used into the nano scale photo switch. Furthermore, many studies are interested in the organic linkers that connect the azobenzene and metal electrodes. We used S, $CH_2S$, $(CH_2)_4S$ as the linker to watch the influence of linkers for electronic properties. So We suggest a photoswitching device based on the vertical junction using the first-principles calculations with density functional theory and non-equilibrium Greens function (NEGF). By analyzing the electronic structure and tunneling current caused by the structural difference of the system between cis- and trans- azobenzene, the difference in switching mechanism, ON/OFF ratio and transmission will be watched as the linker changes. And finally We will suggest which linker would be the better for the optimal device architecture which can achieve high control of the ON/OFF photocurrent ratio. This result will show the potential of azobenzene-based photoswitch and provide the critical insight in constructing the optimal device architecture.

  • PDF

Single Crystal Silicon Thin Film Transistor using 501 Wafer for the Switching Device of Top Emission Type AMOLEDs (SOI 웨이퍼를 이용한 Top emission 방식 AMOLEDs의 스위칭 소자용 단결정 실리콘 트랜지스터)

  • Chang, Jae-Won;Kim, Hoon;Shin, Kyeong-Sik;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.292-297
    • /
    • 2003
  • We fabricated a single crystal silicon thin film transistor for active matrix organic light emitting displays(AMOLEDs) using silicon on insulator wafer (SOI wafer). Poly crystal silicon thin film transistor(poly-Si TFT) Is actively researched and developed nowsdays for a pixel switching devices of AMOLEDs. However, poly-Si TFT has some disadvantages such as high off-state leakage currents and low field-effect mobility due to a trap of grain boundary in active channel. While single crystal silicon TFT has many advantages such as high field effect mobility, low off-state leakage currents, low power consumption because of the low threshold voltage and simultaneous integration of driving ICs on a substrate. In our experiment, we compared the property of poly-Si TFT with that of SOI TFT. Poly-Si TFT exhibited a field effect mobility of 34 $\textrm{cm}^2$/Vs, an off-state leakage current of about l${\times}$10$\^$-9/ A at the gate voltage of 10 V, a subthreshold slope of 0.5 V/dec and on/off ratio of 10$\^$-4/, a threshold voltage of 7.8 V. Otherwise, single crystal silicon TFT on SOI wafer exhibited a field effect mobility of 750 $\textrm{cm}^2$/Vs, an off-state leakage current of about 1${\times}$10$\^$-10/ A at the gate voltage of 10 V, a subthreshold slope of 0.59 V/dec and on/off ratio of 10$\^$7/, a threshold voltage of 6.75 V. So, we observed that the properties of single crystal silicon TFT using SOI wafer are better than those of Poly Si TFT. For the pixel driver in AMOLEDs, the best suitable pixel driver is single crystal silicon TFT using SOI wafer.

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jo, Won-Ju;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Study on the Formation Mechanism of Hard Chrome Surface Morphology by Atomic Force Microscopy

  • Lee, B.K.;Park, Y.;Kim, Man;S.C. Kwon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.35-35
    • /
    • 2002
  • Atomic force microscopy was applied to study the formation and growth mechanism of thin chrome layers prepared under various pulse plating conditions. The chrome was electro-deposited from an electrolyte bath containing 250 gl-l of chromic acid, 25 gl-l of sulfuric acid using direct current density of $1.6{\;}mA.$\textrm{mm}^{-2} and pulse currents with on-off time from 5 to 900 ms. The higher current density enhanced nucleation rate which resulted in refining grain size. The chrome growth kinetics determining nodule size and shape significantly depends on the duration of on-time rather than duration of off-time and on/off time ratio.

  • PDF

Characteristics of Circular β-Ga2O3 MOSFETs with High Breakdown Voltage (>1,000 V) (높은 항복전압(>1,000 V)을 가지는 Circular β-Ga2O3 MOSFETs의 특성)

  • Cho, Kyu Jun;Mun, Jae-Kyong;Chang, Woojin;Jung, Hyun-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2020
  • In this study, MOSFETs fabricated on Si-doped, MBE-grown β-Ga2O3 are demonstrated. A Si-doped Ga2O3 epitaxial layer was grown on a Fe-doped, semi-insulating 1.5 cm × 1 cm Ga2O3 substrate using molecular beam epitaxy (MBE). The fabricated devices are circular type MOSFETs with a gate length of 3 ㎛, a source-drain spacing of 20 ㎛, and a gate width of 523 ㎛. The device exhibited a good pinch-off characteristic, a high on-off drain current ratio of approximately 2.7×109, and a high breakdown voltage of 1,080 V, which demonstrates the potential of Ga2O3 for power device applications including electric vehicles, railways, and renewable energy.

Simulation of channel dimension dependent conduction and charge distribution characteristics of silicon nanowire transistors using a quantum model (양자모델을 적용한 실리콘 나노선 트랜지스터의 채널 크기에 따른 전도 및 전하분포 특성 시뮬레이션)

  • Hwang, Min-Young;Choi, Chang-Yong;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.77-78
    • /
    • 2009
  • We report numerical simulations to investigate of the dependence of the on/off current ratio and channel charge distributions in silicon nanowire (SiNW) field-effect transistors (FETs) on the channel width and thicknesses. In order to investigate the transport behavior in devices with different channel geometries, we have performed detailed two-dimensional simulations of SiNWFETs and control FETs with a fixed channel length L of 10um, but varying the channel width W from 5nm to 5um, and thickness t from 10nm to 30nm. We have shown that $Q_{ON}/Q_{OFF}$ drastically decreases (from ${\sim}2.9{\times}10^4$ to ${\sim}9.8{\times}10^3$) as the channel thickness increases (from 10nm to 30nm). As a result of the simulation using a quantum model, even higher charge density in the bottom of SiNW channel was observed than that in the bottom of control channel.

  • PDF

The plasma polymerized polymer thin films for application to organic thin film transistor (유기박막 트랜지스터로의 응용을 위한 플라즈마 중합 고분자 박막)

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo;You, Do-Hyun;Park, Se-Geun;Lee, El-Hang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1353_1354
    • /
    • 2009
  • The OTFT devices had inverted staggered structures of Au/pentacene/ppMMA/ITO on PET substrate. The overall device performances of the flexible devices such as the operating voltage, the field effect mobility, the on/off ratio and the off current are somewhat worse than those of devices fabricated on glass substrates. Pentacene/ppMMA OTFT benchmarks (mobility, sub-threshold slope, on/off ratio) were comparable to that of solution cast PMMA, but below average when compared to other polymer gate dielectrics. However, threshold and drive voltages were among the lowest reported for a polymer gate dielectric, and surpassed only by ultra-thin SAM gate dielectrics.

  • PDF

Study on the Hydrogen Treatment Effect of Vacuum deposited Pentacene Thin Film Transistors

  • Lee, Joo-Won;Chang, Jae-Won;Kim, Hoon;Kim, Kwang-Ho;Kim, Jai-Kyeong;Kim, Young-Chul;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.668-672
    • /
    • 2003
  • In order to reach the high electrical quality of organic thin film transistors (OTFTs) such as high mobility and on-off current ratio, it is strongly desirable to study the enhancement of electrical properties in OTFTs. Here, we report the novel method of hydrogen $(H_{2})$ plasma treatment to improve electrical properties in inverted staggered OTFTs based on pentacene as active layer. To certify the effect of this method, we compared the electrical properties of normal device as a reference with those of device using the novel method. In result, the normal device as a reference making no use of this method exhibited a field effect mobility of 0.055 $cm^{2}/Vs$, on/off current ratio of $10^{3}$, threshold voltage of -4.5 V, and subthreshold slope of 7.6 V/dec. While the device using the novel method exhibited a field effect mobility of 0.174 $cm^{2}/Vs$, on/off current ratio of $10^{6}$. threshold voltage of -0.5 V, and subthreshold slope of 1.49 V/dec. According to these results, we have found the electrical performances in inverted staggered pentacene TFT owing to this novel method are remarkably enhanced. So, this method plays a key role in highly improving the electric performance of OTFTs. Moreover, this method is the first time yet reported for any OTFTs

  • PDF