Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.7.415

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique  

Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.7, 2015 , pp. 415-418 More about this Journal
Abstract
In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.
Keywords
$TiO_2$ active-channel thin-film transistors; Atomic layer deposition; Rapid thermal annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: http://dx.doi.org/10.1126/science.1083212]   DOI   ScienceOn
2 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]   DOI
3 C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012]   DOI
4 J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: http://dx.doi.org/10.1063/1.2969780]   DOI
5 W. B Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: http://dx.doi.org/10.1063/1.2120895]   DOI
6 B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: http://dx.doi.org/10.1021/ja068876e]   DOI
7 Y. S. Rim, H. S. Lim, and H. J. Kim, Appl. Mater. Interfaces, 5, 3565 (2013). [DOI: http://dx.doi.org/10.1021/am302722h]   DOI
8 M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, Appl. Phys., 89, 242103 (2006).
9 C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: http://dx.doi.org/10.1149/1.2800562]   DOI
10 P. C. Yao, J. L. Chiang, and M. C. Lee, Solid State Sciences, 28, 47 (2014). [DOI: http://dx.doi.org/10.1016/j.solidstatesciences.2013.12.011]   DOI
11 C. Y. Koo, K.K.K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, Electrochem. Solid-State Lett., 157, J111 (2010).
12 P. H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett., 96, 082116 (2010). [DOI: http://dx.doi.org/10.1063/1.3330944]   DOI
13 Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, and R.L.V. Meirhaeghe, J. Appl. Phys., 102, 083521 (2007). [DOI: http://dx.doi.org/10.1063/1.2798384]   DOI
14 J. Y. Kim, Y. J. Choi, H. H. Park, S. Golledge, and D. C. Johnson, JVST A, 28, 1111 (2010).
15 C. F. Zhu, W. K. Fong, B. H. Leung, C. C. Cheng, and S. Charles, IEEE Electron Device, 48, 1225 (2001). [DOI: http://dx.doi.org/10.1109/16.925252]   DOI
16 Z. Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, Phys. Rev. Lett., 89, 285505 (2002). [DOI: http://dx.doi.org/10.1103/PhysRevLett.89.285505]   DOI
17 H. S. Witham and P. M. Lenahan, Appl. Phys. Lett., 51, 1007 (1987). [DOI: http://dx.doi.org/10.1063/1.98813]   DOI
18 H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron., 47, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1101(02)00210-1]   DOI