DOI QR코드

DOI QR Code

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique

원자층 증착 기술을 이용한 TiO2 활성층 기반 TFT 연구

  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • Received : 2015.06.02
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.

Keywords

References

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: http://dx.doi.org/10.1126/science.1083212]
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]
  3. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012]
  4. J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: http://dx.doi.org/10.1063/1.2969780]
  5. W. B Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: http://dx.doi.org/10.1063/1.2120895]
  6. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: http://dx.doi.org/10.1021/ja068876e]
  7. Y. S. Rim, H. S. Lim, and H. J. Kim, Appl. Mater. Interfaces, 5, 3565 (2013). [DOI: http://dx.doi.org/10.1021/am302722h]
  8. M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, Appl. Phys., 89, 242103 (2006).
  9. C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: http://dx.doi.org/10.1149/1.2800562]
  10. P. C. Yao, J. L. Chiang, and M. C. Lee, Solid State Sciences, 28, 47 (2014). [DOI: http://dx.doi.org/10.1016/j.solidstatesciences.2013.12.011]
  11. C. Y. Koo, K.K.K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, Electrochem. Solid-State Lett., 157, J111 (2010).
  12. P. H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett., 96, 082116 (2010). [DOI: http://dx.doi.org/10.1063/1.3330944]
  13. Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, and R.L.V. Meirhaeghe, J. Appl. Phys., 102, 083521 (2007). [DOI: http://dx.doi.org/10.1063/1.2798384]
  14. J. Y. Kim, Y. J. Choi, H. H. Park, S. Golledge, and D. C. Johnson, JVST A, 28, 1111 (2010).
  15. C. F. Zhu, W. K. Fong, B. H. Leung, C. C. Cheng, and S. Charles, IEEE Electron Device, 48, 1225 (2001). [DOI: http://dx.doi.org/10.1109/16.925252]
  16. Z. Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, Phys. Rev. Lett., 89, 285505 (2002). [DOI: http://dx.doi.org/10.1103/PhysRevLett.89.285505]
  17. H. S. Witham and P. M. Lenahan, Appl. Phys. Lett., 51, 1007 (1987). [DOI: http://dx.doi.org/10.1063/1.98813]
  18. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron., 47, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1101(02)00210-1]