• Title/Summary/Keyword: On-Dock system algorithm

Search Result 8, Processing Time 0.019 seconds

A Study on the Effect of On-Dock System in Container Terminals - Focusing on GwangYang Port - (컨테이너터미널에서 On-Dock 시스템 효과분석에 관한 연구 - 광양항을 중심으로 -)

  • Cha, Sang-Hyun;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • These days Container Terminals are focusing on increasing the quantity of containers and shipping lines choose Terminals by referring to the key elements of a terminal to perform the overall operation the fastest such as the location of the terminal, discharging ability, keeping environment, and other elements related to shipping in general. Container terminal is able to offer On-Dock service has become an important factor for shipping lines to choose that terminal. In this paper, we propose an algorithm for On-Dock system work algorithm, the algorithm Empty container exports, Full Container algorithm and The aim of our study focus on both container's gate out time and search for the effective terminal operation which is using the general On-Dock system through several algorithm like container batch priority, gate in and out job priority and empty container yard equipment allocation rule based on the automatic allocation method and manual allocation scheme for container. Gathering these information, it gives the priority and yard location of gate-out containers to control. That is, by selecting an optimum algorithm container, container terminals Empty reduces the container taken out time, it is possible to minimize unnecessary re-handling of the yard container can be enhanced with respect to the efficiency of the equipment. Operations and operating results of the Non On-Dock and On-Dock system is operated by the out work operations (scenarios) forms that are operating in the real Gwangyang Container Terminal derived results. Gwangyang Container terminal and apply the On-Dock system, Non On-Dock can be taken out this time, about 5 minutes more quickly when applying the system. when managing export orders for berths where On-Dock service is needed, ball containers are allocated and for import cargoes, D/O is managed and after carryout, return management, container damage, cleaning, fixing and controlling services are supported hence the berth service can be strengthened and container terminal business can grow.

A Development of Floating Dock Controller for Skid Launching System (Skid Launching System을 위한 Floating Dock Controller의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.375-380
    • /
    • 2009
  • The authors had consisted the construction of shipyard must be investigated under the consideration of long term ship's demand and so the Floating Dock might be an alternative to the dry dock. This paper shows a development of Floating Dock Controller for Skid Launching System(SLS). While loading out a block to the Floating Dock and launching ship from the Floating Dock, the balancing of the ship and the dock is very important and achieved by adjusting the Ballast tank of the Floating Dock In this paper a Floating Dock Controller for SLS was developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Tank Plan. The control system developed was applied to a shipbuilding and verified good and stable.

A Development of Floating Dock Control Simulator for Skid Launching System (Skid Launching System을 위한 Floating Dock Control Simulator의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Since the shipbuilding industry is at its peak to assimilate the large volume of orders in recent years, the Floating Dock has been an alternative to the dry dock which takes a certain period of time to build. Hence the use of Floating Dock is steadily increasing. Since the Skid Launching System(SLS) is used in Floating Dock, the balancing of the ship while launching is important and achieved by adjusting the Ballast tank of the Floating Dock. In this paper a Floating Dock Control Simulator for SLS is developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Simulation Tank Plan.

Ballasting plan optimization for operation of a 2D floating dry dock

  • Yoon, Kyungho;Kim, Hyo-Jin;Yeo, Seungkyun;Hong, Younghwa;Cha, Jihye;Chung, Hyun
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.521-532
    • /
    • 2020
  • A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast system. An appropriate ballasting plan warrants safe and precise construction on a floating dock. Particularly, in the case of a 2D floating dock, ballasting plan evaluation is crucial due to complex deformation modes. In this paper, we developed a method to calculate the optimal ballasting plan for accurate and precise construction on a 2D floating dock. The finite element method was used for considering the flexibility of the floating dock as well as the construction blocks. Through a gradient-based optimization algorithm, the optimal ballasting plan for the given load condition was calculated in semi-real time (5 min). The present method was successfully used for the actual construction of an offshore structure on the 2D floating dock.

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

A CSP-based Load Leveling Algorithm for Ship Block Erection Network

  • Ryu, Ji-Sung;Park, Jin-Hyoung;Kim, Hong-Tae;Lee, Byung-No;Shin, Jong-Gye
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.2
    • /
    • pp.37-44
    • /
    • 2006
  • The erection in shipbuilding is the process to assemble all the blocks one by one in certain order and requires more leveled and efficient schedule than other processes do. However, erection schedule includes too many constraints to be systemized with simple programs and constraints are changed frequently. These difficulties make it rare to find automatic erection schedule generation system with load leveling ability. In this paper, a CSP (Constraint Satisfaction Problem)-based load leveling algorithm using a maximum load diminution technique is proposed and applied to the block erection scheduling of a dock in a shipyard. The result shows that it performs better than currently used scheduling method based on empirical logics. The maximum load of welding length and crane usage are reduced by 31.63% and 30.00% respectively. The deviation of resource usage amount also decreases by 8.93% and 7.51%.

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.