• Title/Summary/Keyword: On-Chain Data

Search Result 1,644, Processing Time 0.034 seconds

An Energy Efficient Chain-based Routing Protocol for Wireless Sensor Networks

  • Sheikhpour, Razieh;Jabbehdari, Sam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1357-1378
    • /
    • 2013
  • Energy constraint of wireless sensor networks makes energy saving and prolonging the network lifetime become the most important goals of routing protocols. In this paper, we propose an Energy Efficient Chain-based Routing Protocol (EECRP) for wireless sensor networks to minimize energy consumption and transmission delay. EECRP organizes sensor nodes into a set of horizontal chains and a vertical chain. Chain heads are elected based on the residual energy of nodes and distance from the header of upper level. In each horizontal chain, sensor nodes transmit their data to their own chain head based on chain routing mechanism. EECRP also adopts a chain-based data transmission mechanism for sending data packets from the chain heads to the base station. The simulation results show that EECRP outperforms LEACH, PEGASIS and ECCP in terms of network lifetime, energy consumption, number of data messages received at the base station, transmission delay and especially energy${\times}$delay metric.

Construction of an Internet of Things Industry Chain Classification Model Based on IRFA and Text Analysis

  • Zhimin Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.215-225
    • /
    • 2024
  • With the rapid development of Internet of Things (IoT) and big data technology, a large amount of data will be generated during the operation of related industries. How to classify the generated data accurately has become the core of research on data mining and processing in IoT industry chain. This study constructs a classification model of IoT industry chain based on improved random forest algorithm and text analysis, aiming to achieve efficient and accurate classification of IoT industry chain big data by improving traditional algorithms. The accuracy, precision, recall, and AUC value size of the traditional Random Forest algorithm and the algorithm used in the paper are compared on different datasets. The experimental results show that the algorithm model used in this paper has better performance on different datasets, and the accuracy and recall performance on four datasets are better than the traditional algorithm, and the accuracy performance on two datasets, P-I Diabetes and Loan Default, is better than the random forest model, and its final data classification results are better. Through the construction of this model, we can accurately classify the massive data generated in the IoT industry chain, thus providing more research value for the data mining and processing technology of the IoT industry chain.

Supply Chain Trust Evaluation Model Based on Improved Chain Iteration Method

  • Jiao, Hongqiang;Ding, Wanning;Wang, Xinxin
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.136-150
    • /
    • 2021
  • The modern market is highly competitive. It has progressed from traditional competition between enterprises to competition between supply chains. To ensure that enterprise can form the best strategy consistently, it is necessary to evaluate the trust of other enterprises in the supply chain. First, this paper analyzes the background and significance of supply chain trust research, analyzes and expounds on the qualitative and quantitative methods of supply chain trust evaluation, and summarizes the research in this field. Analytic hierarchy process (AHP) is the most frequently used method in the literature to evaluate and rank criteria through data analysis. However, the input data for AHP analysis is based on human judgment, and hence there is every possibility that the data may be vague to some extent. Therefore, in view of the above problems, this study improves the global trust method based on chain iteration. The improved global trust evaluation method based on chain iteration is more flexible and practical, hence, it can more accurately evaluate supply chain trust. Finally, combined with an actual case of Zhaoxian Chengji Food Co. Ltd., the paper qualitatively analyzes the current situation of supply chain trust management and effectively strengthens the supervision of enterprises to cooperative enterprises. Thus, the company can identify problems on time and strategic adjustments can be implemented accordingly. The effectiveness of the evaluation method proposed in this paper is demonstrated through a quantitative evaluation of its trust in downstream enterprise A. Results suggest that the subjective preferences of and historical transactions together affect the final evaluation of trust.

Analysis of Key Success Factors for Building a Smart Supply Chain Using AHP (AHP를 이용한 스마트 공급망 구축을 위한 주요 성공요인 분석)

  • Cheol-Soo Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.1-15
    • /
    • 2023
  • With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.

Utilizing Block chain in the Internet of Things for an Effective Security Sharing Scheme

  • Sathish C;Yesubai Rubavathi, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1600-1619
    • /
    • 2023
  • Organizations and other institutions have recently started using cloud service providers to store and share information in light of the Internet of Things (IoT). The major issues with this storage are preventing unauthorized access and data theft from outside parties. The Block chain based Security Sharing scheme with Data Access Control (BSSDAC) was implemented to improve access control and secure data transaction operations. The goal of this research is to strengthen Data Access Control (DAC) and security in IoT applications. To improve the security of personal data, cypher text-Policy Attribute-Based Encryption (CP-ABE) can be developed. The Aquila Optimization Algorithm (AOA) generates keys in the CP-ABE. DAC based on a block chain can be created to maintain the owner's security. The block chain based CP-ABE was developed to maintain secures data storage to sharing. With block chain technology, the data owner is enhancing data security and access management. Finally, a block chain-based solution can be used to secure data and restrict who has access to it. Performance of the suggested method is evaluated after it has been implemented in MATLAB. To compare the proposed method with current practices, Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) are both used.

Distribution of supply chain capabilities and firm's sustainable development

  • TO, Tha Hien;THAN, Thuy Trong;NGUYEN, Duyen Thi Kim;NGUYEN, Dat Ngoc
    • Journal of Distribution Science
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2021
  • Purpose: Research on supply chain sustainability is important for exporters When the factor of sustainable development is considered by the businesses as well as governments of all countries. Research on supply chain sustainability is important for exporters. Sustainable supply chain management and supply chain dynamics will help enterprises adapt to changes in the business environment. This study analyzes the impact of sustainable supply chain management, and supply chain dynamic capabilities on the sustainable development of exporting enterprises in Vietnam. Research design, data, and methodology: The research model and survey are designed based on previous studies after surveying export enterprises. With 185 samples collected from export enterprises. The Structural Equation Modeling (SEM) analysis technique is used. Data analysis is performed on SPSS and AMOS software (Reliability test, Confirmatory Factor Analysis, SEM). Results: Sustainable supply chain management and supply chain dynamic capabilities all have positive effects on the sustainable development of businesses (sustainable development is measured by distribution: measuring economic efficiency, social efficiency, and environmental performance). Conclusions: From the results of this study, the authors also made several recommendations to help export enterprises develop sustainability based on sustainable supply chain management and supply chain dynamic capabilities.

Decision-making Model of Supply Chain Inventory Management System (공급망 재고관리시스템의 의사결정모형)

  • Chen, Jinhui;Nam, Soo-tae;Jin, Chan-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.157-158
    • /
    • 2021
  • Big data in the supply chain mainly comes from four aspects. One is the relevant data inevitably generated in the process of product value transfer of enterprises in the supply chain, such as production equipment quality data, planned procurement data, product data, etc; On the other hand, it is derived from the ERP data of various companies in the supply chain; The third is e-commerce data from the customer, and the last is data from external or manually entered data. A third-party data service center analysis and mining the data to predict and control the inventory in the process of supply chain operation. It brings innovation and change of management technology and way of thinking to the whole supply chain in many aspects, and finally achieves the goal of coordinated inventory and zero inventory of the whole supply chain.

  • PDF

Bidirectional Chain Replication for Higher Throughput Provision

  • Mostafa, Almetwally M.;Youssef, Ahmed E.;Aljarbua, Yazeed Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.668-685
    • /
    • 2019
  • Provision of higher throughput without sacrificing consistency guarantees in replication systems is a critical problem. In this paper, we propose a novel approach called Bidirectional Chain Replication (BCR) to improve throughput in traditional Chain Replication (CR) through better utilization of computing and communication resources of the chain. Unlike CR where the whole replicated data store is treated as a single unit, in BCR the replicated shared data at each server in the chain is split into two disjoint Logical Partitions ($LP_1$, $LP_2$). This forms two chains running concurrently on the same hardware in two opposite directions; the first chain ($CR_1$) exclusively manipulates data objects in $LP_1$, while the second chain ($CR_2$) exclusively manipulates data objects in $LP_2$, therefore, conflict is avoided and concurrency is guaranteed. The simultaneous employment of these two chains results in better utilization of hardware in the sense that the two chains can evenly share the workload, hence, throughput can be improved without sacrificing consistency. Experimental results showed an improvement of approximately 85% in throughput of BCR over CR.

Prediction of Tier in Supply Chain Using LSTM and Conv1D-LSTM (LSTM 및 Conv1D-LSTM을 사용한 공급 사슬의 티어 예측)

  • Park, KyoungJong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.120-125
    • /
    • 2020
  • Supply chain managers seek to achieve global optimization by solving problems in the supply chain's business process. However, companies in the supply chain hide the adverse information and inform only the beneficial information, so the information is distorted and cannot be the information that describes the entire supply chain. In this case, supply chain managers can directly collect and analyze supply chain activity data to find and manage the companies described by the data. Therefore, this study proposes a method to collect the order-inventory information from each company in the supply chain and detect the companies whose data characteristics are explained through deep learning. The supply chain consists of Manufacturer, Distributor, Wholesaler, Retailer, and training and testing data uses 600 weeks of time series inventory information. The purpose of the experiment is to improve the detection accuracy by adjusting the parameter values of the deep learning network, and the parameters for comparison are set by learning rate (lr = 0.001, 0.01, 0.1) and batch size (bs = 1, 5). Experimental results show that the detection accuracy is improved by adjusting the values of the parameters, but the values of the parameters depend on data and model characteristics.

Impact of Supply Chain Innovation and Risk Management Capabilities on Competitive Advantage at Steel Trading Companies in Vietnam

  • It Van NGUYEN
    • Journal of Distribution Science
    • /
    • v.21 no.5
    • /
    • pp.43-51
    • /
    • 2023
  • Purpose: The current research investigates the beneficial impacts of supply chain innovation and risk management on the competitive advantage of organizations, based on the resource-based theory (RBT) framework. Research Design, Data, and Methodology: 14 survey items were included in the study's questionnaire, utilizing a random sampling technique to gather data from 239 leaders and managers employed by various steel trading firms in Vietnam. In order to validate the data and examine relationships, the collected data is analyzed using structural equation modeling, confirmatory factor analysis, and reliability analysis via SPSS 22.0 and AMOS 22.0 software. A fictitious system has been suggested. Results: According to the findings, the most positive influence on competitive advantage is supply chain innovation, followed by risk management capability, having the second greatest positive influence. Conclusions: Some conclusions are drawn based on the research's findings in order to assist managers in realizing the significance and necessity of giving attention to supply chain innovation and improving risk management capabilities, both of which are essential components for achieving the competitive advantage of an organization.