Acknowledgement
This research was supported by 2021 Key Research Projects of Henan Higher Education Institutions: Ideas and Countermeasures for Building IoT Industry Cluster in Henan under the Background of 5G (No. 21A790024).
References
- S. Sharma, N. Chhimwal, K. K. Bhatt, A. K. Sharma, P. Mishra, S. Sinha, A. Raj, and S. Tripathi, "FCS-fuzzy net: cluster head selection and routing-based weed classification in IoT with MapReduce framework," Wireless Networks, vol. 27, pp. 4929-4947, 2021. https://doi.org/10.1007/s11276-021-02723-x
- D. P. Penumuru, S. Muthuswamy, and P. Karumbu, "Identification and classification of materials using machine vision and machine learning in the context of Industry 4.0," Journal of Intelligent Manufacturing, vol. 31, pp. 1229-1241, 2020. https://doi.org/10.1007/s10845-019-01508-6
- L. Zhang and N. Ansari, "Optimizing the operation cost for UAV-aided mobile edge computing," IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 6085-609, 2021. https://doi.org/10.1109/TVT.2021.3076980
- L. Liu, E. G. Larsson, P. Popovski, G. Caire, X. Chen, and S. R. Khosravirad, "Guest editorial: massive machine-type communications for IoT," IEEE Wireless Communications, vol. 28, no. 4, pp. 56-56, 2021. https://doi.org/10.1109/MWC.2021.9535445
- J. G. Wieringa, "Comparing predictions of IUCN Red List categories from machine learning and other methods for bats," Journal of Mammalogy, vol. 103, no. 3, pp. 528-539, 2022. https://doi.org/10.1093/jmammal/gyac005
- A. Beniiche, A. Ebrahimzadeh, and M. Maier, "The way of the DAO: toward decentralizing the tactile Internet," IEEE Network, vol. 35, no. 4, pp. 190-197, 2021. https://doi.org/10.1109/MNET.021.1900667
- Z. Zhang and Z. Cai, "Permeability prediction of carbonate rocks based on digital image analysis and rock typing using random forest algorithm," Energy & Fuels, vol. 35, no. 14, pp. 11271-11284, 2021. https://doi.org/10.1021/acs.energyfuels.1c01331
- J. Yang, H. Sui, R. Jiao, M. Zhang, X. Zhao, L. Wang, W. Deng, and X. Liu, "Random-forest-algorithm-based applications of the basic characteristics and serum and imaging biomarkers to diagnose mild cognitive impairment," Current Alzheimer Research, vol. 19, no. 1, pp. 76-83, 2022. https://doi.org/10.2174/1567205019666220128120927
- S. Pasinetti, A. Fornaser, M. Lancini, M. De Cecco, and G. Sansoni, "Assisted gait phase estimation through an embedded depth camera using modified random forest algorithm classification," IEEE Sensors Journal, vol. 20, no. 6, pp. 3343-3355, 2020. https://doi.org/10.1109/JSEN.2019.2957667
- C. Yang, Z. K. Jiang, L. H. Liu, and M. S. Zeng, "Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy," International Journal of Colorectal Disease, vol. 35, pp. 101-107, 2020. https://doi.org/10.1007/s00384-019-03455-3
- Q. Y. Li, J. Han, and L. Lu, "A random forest classification algorithm based personal thermal sensation model for personalized conditioning system in office buildings," The Computer Journal, vol. 64, no. 3, pp. 500-508, 2021. https://doi.org/10.1093/comjnl/bxaa165
- X. Deng, K. Milligan, R. Ali-Adeeb, P. Shreeves, A. Brolo, J. J. Lum, J. L. Andrews, and A. Jirasek, "Group and basis restricted non-negative matrix factorization and random forest for molecular histotype classification and Raman biomarker monitoring in breast cancer," Applied Spectroscopy, vol. 76, no. 4, pp. 462-474, 2020. https://doi.org/10.1177/00037028211035398
- J. Wang, Z. Jiang, Y. Wei, W. Wang, F. Wang, Y. Yang, H. Song, and Q. Yuan, "Multiplexed identification of bacterial biofilm infections based on machine-learning-aided lanthanide encoding," ACS Nano, vol. 16, no. 2, pp. 3300-3310, 2022. https://doi.org/10.1021/acsnano.1c11333
- L. Yu, W. Jiang, Z. Ren, S. Xu, L. Zhang, and X. Hu, "Detecting changes in attitudes toward depression on Chinese social media: a text analysis," Journal of Affective Disorders, vol. 280, pp. 354-363, 2021. https://doi.org/10.1016/j.jad.2020.11.040
- O. Kulkarni, S. Jena, and V. Ravi Sankar, "MapReduce framework based big data clustering using fractional integrated sparse fuzzy C means algorithm," IET Image Processing, vol. 14, no. 12, pp. 2719-2727, 2020. https://doi.org/10.1049/iet-ipr.2019.0899
- M. Macnee, E. Perez-Palma, S. Schumacher-Bass, J. Dalton, C. Leu, D. Blankenberg, and D. Lal, "SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities," Bioinformatics, vol. 37, no. 22, pp. 4285-4287, 2021. https://doi.org/10.1093/bioinformatics/btab365
- M. Mahendran, D. Lizotte, and G. R. Bauer, "Describing intersectional health outcomes: an evaluation of data analysis methods," Epidemiology, vol. 33, no. 3, pp. 395-405, 2022. https://doi.org/10.1097/EDE.0000000000001466
- J. Zhou, Q. Mao, J. Zhang, N. M. Lau, and J. Chen, "Selection of breast features for young women in northwestern China based on the random forest algorithm," Textile Research Journal, vol. 92, no. 7-8, pp. 957-973, 2022. https://doi.org/10.1177/00405175211040869
- Y. J. Yoo and K. S. Cho, "Development of cost-effective IoT module-based pipe classification system for flexible manufacturing system of painting process of high-pressure pipe," The International Journal of Advanced Manufacturing Technology, vol. 119, pp. 5453-5466, 2022. https://doi.org/10.1007/s00170-021-08478-1
- G. Shirazinejad, M. J. V. Zoej, and H. Latifi, "Applying multidate Sentinel-2 data for forest-type classification in complex broadleaf forest stands," Forestry, vol. 95, no. 3, pp. 363-379, 2022. https://doi.org/10.1093/forestry/cpac001