• 제목/요약/키워드: On state voltage drop

검색결과 107건 처리시간 0.03초

Dual Gate Emitter Switched Thyristor의 Latch-up 전류 특성 (Characteristics of Latch-up Current of the Dual Gate Emitter Switched Thyristor)

  • 이응래;오정근;이형규;주병권;김남수
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.799-805
    • /
    • 2004
  • Two dimensional MEDICI simulator is used to study the characteristics of latch-up current of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics, latch-up current density, ON-voltage drop and electrical property with the variations of p-base impurity concentrations. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have the better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer p-base structure under the floating $N^+$ emitter indicates to have the better characteristics of latch-up current and breakover voltage.

이중 Gate를 갖는 Trench Emitter IGBT의 특성 (The Characteristics of a Dual gate Trench Emitter IGBT)

  • 강영수;정상구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.523-526
    • /
    • 2000
  • A dual gate trench emitter IGBT structure is proposed and studied numerically using the device simulator MEDICI. The on-state forward voltage drop latch-up current density turn-off time and breakdown voltage of the proposed structure are compared with those of the conventional DMOS-IGBT and trench gate IGBT structures. The proposed structure forms an additional channel and increases collector current level resulting in reduction of on -state forward voltage drop. In addition the trench emitter increases latch-up current density by 148% in comparison with that for the conventional DMOS-IGBT and by 83% compared with that for the trench gate IGBT without degradation in breakdown voltage when the half trench gate width(Tgw) and trench emitter depth(Ted) are fixed at $1.5\mum\; and\; 2\mum$, respectively

  • PDF

배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법 (Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems)

  • 박재형;전철우;임성일
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

Battery State-of-Charge Estimation Algorithm Using Dynamic Terminal Voltage Measurement

  • Lee, Su-Hyeok;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.126-131
    • /
    • 2015
  • When a battery is discharging, the battery's current and terminal voltage must both be measured to estimate its state of charge (SOC). If the SOC can be estimated by using only the current or voltage, hardware costs will decrease. This paper proposes an SOC estimation algorithm that needs to measure only the terminal voltage while a battery is discharging. The battery's SOC can be deduced from its open circuit voltage (OCV) through the relationship between SOC and OCV. But when the battery is discharging, it is not possible to measure the OCV due to the voltage drop in the battery's internal resistance (IRdrop). The proposed algorithm calculates OCV by estimating IRdrop using a dynamic terminal voltage measurement. This paper confirms the results of applying the algorithm in a hardware environment via algorithm binarization. To evaluate the algorithm, a Simulink battery model based on actual values was used.

An analysis of new IGBT(Insulator Gate Bipolar Transistor) structure having a additional recessedwith E-field shielding layer

  • 유승우;이한신;강이구;성만영
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.247-251
    • /
    • 2007
  • The recessed gate IGBT has a lower on-state voltage drop compared with the DMOS IGBT, because there is no JFET resistance. But because of the electric field concentration in the corner of the gate edge, the breakdown voltage decreases. This paper is about the new structure to effectively improve the Vce(sat) voltage without breakdown voltage drop in 1700V NPT type recessed gate IGBT with p floating shielding layer. For the fabrication of the recessed gate IGBT with p floating shielding layer, it is necessary to perform the only one implant step for the shielding layer. Analysis on the Breakdown voltage shows the improved values compared to the conventional recessed gate IGBT structures. The result shows the improvement on Breakdown voltage without worsening other characteristics of the device. The electrical characteristics were studied by MEDICI simulation results.

  • PDF

다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션 (Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway)

  • 김주락
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

1 um 미만의 나노트렌치 게이트 구조를 갖는 1,200 V 고효율 트렌치 게이트 필드스톱 IGBT 설계에 관한 연구 (Design of 1,200 V Class High Efficiency Trench Gate Field Stop IGBT with Nano Trench Gate Structure)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.208-211
    • /
    • 2018
  • This paper details the design of a 1,200 V class trench gate field stop IGBT (insulated gate bipolar transistor) with a nano gate structure smaller than 1 um. Decreasing the size is important for lowering the cost and increasing the efficiency of power devices because they are high-voltage switching devices, unlike memory devices. Therefore, in this paper, we used a 2-D device and process simulations to maintain a gate width of less than 1 um, and carried out experiments to determine design and process parameters to optimize the core electrical characteristics, such as breakdown voltage and on-state voltage drop. As a result of these experiments, we obtained a wafer resistivity of $45{\Omega}{\cdot}cm$, a drift layer depth of more than 180 um, an N+ buffer resistivity of 0.08, and an N+ buffer thickness of 0.5 um, which are important for maintaining 1,200 V class IGBTs. Specially, it is more important to optimize the resistivity of the wafer than the depth of the drift layer to maintain a high breakdown voltage for these devices.

배전계통에서의 최적 부하절체를 위한 전문가 시스템 (An Expert System for Optimal Load Transfer in Distribution Systems)

  • 문영현;최병윤;김세호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

풍력발전이 연계된 배전선로 전압 및 과도상태 해석 (Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation)

  • 김세호;나경윤;김건훈
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

Junction Temperature Prediction of IGBT Power Module Based on BP Neural Network

  • Wu, Junke;Zhou, Luowei;Du, Xiong;Sun, Pengju
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.970-977
    • /
    • 2014
  • In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.