• Title/Summary/Keyword: Oled

Search Result 1,535, Processing Time 0.026 seconds

Recent Progress and Future Trends of OLED Technologies for Lighting Applications (OLED 조명 기술의 최신 기술 및 장래 전망)

  • Yu, B.G.;Lee, J.I.;Chu, H.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.5
    • /
    • pp.11-23
    • /
    • 2013
  • OLED 조명은 얇고 가볍고 열이 나지 않은 이점을 가질 뿐만 아니라 형광등 절반의 전력으로 같은 밝기가 구현 가능하여 저전력 조명기구가 가능하게 될 것이다. 또한 태양광에 가까운 균일한 면광원으로 부드러우면서 자연스러우면서 다양한 모양의 등 기구 제작이 가능한 차세대 조명이다. 본고에서는 OLED 조명의 발광원리와 특징, OLED의 고성능화를 위한 고효율 재료기술, 광추출 기술, 백색 OLED 기술, 봉지기술 등에 관하여 기술하였다. 또한 OLED 광원 산업체의 동향을 한국을 중심으로 일본업체, 대만/중국업체, 미국업체, 유럽업체 순으로 살펴보았다. OLED 조명은 2020년에 이론적인 발광 효율인 200lm/W가 구현이 되면 일상생활의 조명이 획기적으로 변화되는 사회를 맞을 것으로 기대되므로, 전 세계적으로 시장형성 초기단계이므로 선제적이고 전주기적인 지원을 통하여 시장선점 및 확대가 필요하다.

  • PDF

Charge transport materials for the manufacture of OLEDs

  • Kathirgamanathan, Poopathy;Surendrakumar, S.;Ganeshamurugan, S.;Kumaraverl, M.;Paramaswara, G.;Partheepan, A.;Ravichandran, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.357-362
    • /
    • 2006
  • OLEDs are becoming established as a commercially viable flat panel display technology of choice of the $21^{st}$ century because of its lightweight, fast response time, lower thickness than LCD's and potentially low cost (1-2). For the OLEDs to function effectively, highly thermally stable materials, which offer high efficiency and long operational lifetimes are required. To achieve long lifetime, highly stable charge (both holes and electrons) transporters are essential. OLED-T provides these materials as well as fluorescent and phosphorescent dopants. This paper reports a unique patented hole injector (E9363) and an electron transporter (E246) that increases the lifetime and efficiency and reduces operating voltage. Further, an electron injector, EEI-101, which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF, which requires $580^{\circ}C$, is also presented.

  • PDF

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

Fabrication of Organic Thin Film for Flexible OLED Passivation and Its Characterization (플렉시블 OLED 패시베이션용 유기 박막 제작 및 특성)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.93-96
    • /
    • 2020
  • Polyimide thin film was prepared by annealing the polyamic acid that was synthesized through co-deposition of diamine and dianhydride. The polyamic acid and polyimide thin film were characterized with FT-IR and HR FE-SEM. The average roughness of the film surface, evaluated with AFM, were 0.385 nm and 0.299 nm after co-deposition, and annealing at 120 ℃ respectively. OLED was passivated with the polyimide layer of 200 nm thickness. While the inorganic passivation layer enhances the WVTR of OLED, the organic passivation layer gives flexibility to the OLED. The in-situ passivation of OLED with organic thin film layer provides the leading technique to develop flexible OLED Display.

A Novel OLED Inspection Process Method with Simultaneous Measurement for Standard and Deposition Pattern (기준패턴과 증착패턴의 동시 측정을 통한 OLED 공정 검사 방법)

  • Kwak, Byeongho;Cheoi, Kyungjoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.63-70
    • /
    • 2019
  • The subject of the simultaneous measuring system of base pattern and deposition pattern is a new research topic on a defect inspection of OLED. In this paper, we propose a new OLED inspection method that simultaneously measures standard and deposition pattern images. This method reduces unnecessary processes and tac time during OLED inspection. For an additional reduction of the tac time during pattern measurement, the ROI was configured to measure only in the designated ROI area instead of measuring the entire area of an image. During the ROI set-up, the value of effective deposition pattern area is included so that if the deposition pattern is out of the ROI zone, it would be treated as a defect before measuring the size and center point of the pattern. As a result, the tac time and inspection process could be shortened. The proposed method also could be applied to the OLED manufacturing process. Production of OLED could be increased by reducing tac time and inspection process.

Method to Enhance Color Gamut up to 89 % in Bottom Emission Active-Matrix Organic Light Emitting Device

  • Kim, Hwa-Kyung;Choi, Hong-Seok;Yoo, Dong-Hee;Kim, Woo-Chan;Yoon, Jong-Geun;Yang, Joong-Whan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.43-46
    • /
    • 2007
  • Though bottom emission AM-OLED has advantages in respect of mass production, the bottom emission type is underrated due to its low aperture ratio and low color gamut, compared with top emission type. In this paper, we demonstrate that the color gamut up to 89 % can be simply achieved by depositing dielectric multilayers, whose thicknesses are determined using an optical simulation program, prior to formation of Si layer.

  • PDF

Characterization of Thin Film Passivation for OLED by PECVD (PECVD에 의한 OLED 소자의 Thin Film Passivation 특성)

  • Kim, KwanDo;Jang, SeokHee;Kim, JongMin;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.574-581
    • /
    • 2012
  • The relatively short lifetime is a major obstruction for the commercial applications of OLED. One of the reason for the short lifetime is that the organic materials are interacted with water or oxygen in the atmosphere. Protection of water or oxygen from diffusing into the organic material layers are necessary to increase the lifetime of OLED. Although encapsulation of OLED with glass or metal cans has been established, passivation methods of OLED by organic/inorganic thin films are still being developed. In this paper we have developed in-situ passivation system and thin film passivation method using PECVD by which deposition can be performed at room temperature. We have analyzed the characteristics of the passivated OLED device also. The WVTR (Water Vapor Transmission Rate) for the inorganic thin film mono-layer can be reached down to $1{\times}10^{-2}g/m^2{\cdot}day$ and improved lifetime can be obtained. Thin film passivation methods are expected to be applied to flexible display.

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials (적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성)

  • Park, Chan-Suk;Jua, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

Encapsulation Method of OLED with Organic-inorganic Protective Thin Films Sealed with Flat Glass (평판 유리로 봉인된 유-무기 보호 박막을 갖는 OLED 봉지 방법)

  • Park, Min-Kyung;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.381-386
    • /
    • 2012
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which $Alq_3$ as organic buffer layer and LiF and Al as inorganic protective layers were deposited to protect the damage of OLED by epoxy. And then the OLEDs were attached to flat glass by printing method using epoxy. The basic structure of OLED doped with rubrene of 1 vol.% as emitting layer is ITO(150 nm) / 2-TNATA(50 nm) / ${\alpha}$-NPD(30 nm) / $Alq_3$:Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). In case of depositing $Alq_3$, LiF and Al and then attaching of flat glass onto OLED, current density, luminance, efficiency and driving voltage were not changed and lifetime was increased according to thickness of Al as inorganic protective layers. The lifetime of OLED/$Alq_3$/LiF/Al_4/glass structure was 139 hours increased by 15.8 times more than bare OLED of 8.8 hours and 1.6 times more than edge sealed OLED of 54.5 hours.