• Title/Summary/Keyword: Oleate

Search Result 115, Processing Time 0.023 seconds

The Study on the Composition of Rehmanniae Radix Extracts by Supercritical Carbon Dioxide Extraction and by Hydrodistillation Extraction (생지황(生地黃) 증류 추출 약침액과 초임계 유체 추출물의 성분 연구(硏究))

  • Heo, Jong-Won;Yook, Tae-Han
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • Objectives : The purpose of this study was to investigate the composition of Rehmannia glutinosa's essential oils with Rehmanniae Radix herbal acupuncture Methods : I obtained the essential oils of Rehmannia Radix by hydrodistillation extraction method and supercritical fluid extraction(SFE) method, and then I analyzed those by GC/MS(gas chromatography/mass spectrum). Results : 1. With GC(gas chromatography) and GC/MS(gas chromatography/mass spectrum) analysis. I identified 9 compounds in the Rehmanniae Radix's essential oil obtained through the SFE method. The main compounds were as follows : Hexachloroethane(2.24%), N-Butyl-benzenesulfonamide(2.05%), hexadecanoic acid(1.93%), hexadecanoic acid, ethyl ester(3.49%), 9,12-Octadecadienoic acid(z,z)(2.70%), (9E)-9-Octadecenoic acid(6.14%), ethyl linoleate(4.43%), ethyl oleate(5.80%). 2. I failed to get Rehmanniae Radix's essential oil obtained through the hydrodistillation method. 3. With GC(gas chromatography) and GC/MS(gas chromatography/mass spectrum) analysis. I identified 4 compounds in the Rehmanniae Radix's essential oil obtained through the hydrodistillation method. The main compounds were as follows : Ethylbis(trimethylsilyl)amine(1.04%), 2-(Trimethylsiloxy)benzoic methyl ester(2.65%), Hexadecanoic acid trimethylsilyl ester(12.61%), octadecanoic acid, trimethylsilyl ester(6.28%). Conclusions : The substances by hydrodistillation method may not perfectly match with the substances by supercritical fluid extraction(SFE) method in essential oils extracted form Rehmanniae Radix. But, the main substances was assumed Hexadecanoic acid and octadecanoic acid.

t10,c12 Conjugated Linoleic Acid Upregulates Hepatic De Novo Lipogenesis and Triglyceride Synthesis via mTOR Pathway Activation

  • Go, Gwang-Woong;Oh, Sangnam;Park, Miri;Gang, Gyoungok;McLean, Danielle;Yang, Han-Sul;Song, Min-Ho;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1569-1576
    • /
    • 2013
  • In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA ($100{\mu}M$) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon;Jang, Min;Park, Chang Min;Han, Jonghun;Yoon, Yeomin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1201-1207
    • /
    • 2020
  • This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

Energy Efficiency and Nutrient Deposition in Early-Weaned Pigs, according to Fat Sources Containing Different Acidic Series

  • Bosi, P.;Jung, H.J.;Han, In K.;Cacciavillani, J.A.;Casini, L.;Mattuzzi, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.995-1002
    • /
    • 2000
  • To evaluate energy efficiency and partition of nutrients, 32 piglets were weaned at 14 d of age and individually fed diets containing 15% fat from coconut oil (CO, medium chain saturated), high oleate sunflower oil (HOSO, n-9 series), soybean oil (SO, n-6 series), or linseed oil plus fish oil, (LF, n-3 series). After 4 weeks, the subjects were sacrificed to evaluate empty body composition and apparent ileal digestibility with the slaughter method. No statistical effect of dietary fat sources on growth was observed. The digestibility of fat from the coconut oil diet was higher than fats from the diets containing high levels of unsaturated fatty acids. The efficiency of use of metabolizable energy for growth averaged 63% and was not affected by the diet. Dietary fat composition was reflected strongly in backfat. Total body neutral and polar fatty acids were influenced too. For the whole body phospholipid fraction the ratio of n-6 to n-3 and the double bond index were 4.3, 5.8, 7.2, 0.78 and 69, 87, 89, 87 for CO, HOSO, SO, and LF respectively. These results show that for the coconut oil diet the degree of unsaturation of phospholipids in the body was lower and that, in the other diets, it did not differ, but double bond index was maintained with different n-6 to n-3 ratios in carcass fat. On the whole the data on body fat composition indicate that the dietary fat tended to be deposited in similar quantity in the body, whatever was the dietary fatty acid profile.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

THE EFFECT OF FILLERS ON THE DEINKING OF PHOTOCOPIED PAPER

  • Chen, Qing-min;Chang, Hou-min;Ethan K. Andrews;Heinz G. Olf
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.159-163
    • /
    • 1999
  • Model experiments were conducted to investigate the effect of different fillers on the removal of toner ink. Combinations of different papers (commercial photocopy paper and filler-free paper), fillers (calcium carbonate, kaolin clay, and talc), and chemicals(1-octadecanol, stearic acid, oleic acid, and TOFA) and stearic acid were found to be effective in detachment and agglomeration of toner ink. Furthermore, pH had little effect on toner detachment and agglomeration, indicating both protonated fatty acids and their anions are equally effective. In the presence of either kaolin clay or talc, all these agglomerating agents are equally effective, although a slightly higher dosage(1% for clay and 2% for talc as compared with control) is required, presumably due to the adsorption of chemical by the filler. Calcium carbonate filler, on the other hand, has a significant and adverse effect on the fatty acids used but has little effect on 1-octadecanol with the exception of possible adsorption. While stearic acid is not effective, a much higher level of oleic acid or TOFA is needed when calcium carbonate fillers are present as compared to the filler-free case. Fatty acids react with calcium carbonate to form calcium salts. The availability of fatty acid anion for toner detachment and agglomeration is determined by the solubility of calcium salt of a given fatty acid. Calcium oleate is 10 times more soluble in water than calcium stearate.

Determination of Fatty Acid Composition in Peanut Seed by Near Infrared Reflectance Spectroscopy

  • Lee, Jeong Min;Pae, Suk-Bok;Choung, Myoung-Gun;Lee, Myoung-Hee;Kim, Sung-Up;Oh, Eun-young;Oh, Ki-Won;Jung, Chan-Sik;Oh, In Seok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.64-69
    • /
    • 2016
  • This study was conducted to develop a fast and efficient screening method to determine the quantity of fatty acid in peanut oil for high oleate breeding program. A total of 329 peanut samples were used in this study, 227 of which were considered in the calibration equation development and 102 were utilized for validation, using near infrared reflectance spectroscopy (NIRS). The NIRS equations for all the seven fatty acids had low standard error of calibration (SEC) values, while high R2 values of 0.983 and 0.991 were obtained for oleic and linoleic acids, respectively in the calibration equation. Furthermore, the predicted means of the two main fatty acids in the calibration equation were very similar to the means based on gas chromatography (GC) analysis, ranging from 36.7 to 77.1% for oleic acid and 7.1 to 42.7% for linoleic acid. Based on the standard error of prediction (SEP), bias values, and $R^2$ statistics, the NIRS fatty acid equations were accurately predicted the concentrations of oleic and linoleic acids of the validation sample set. These results suggest that NIRS equations of oleic and linoleic acid can be used as a rapid mass screening method for fatty acid content analysis in peanut breeding program.

Hershberger Assays for Di-2-ethylhexyl Phthalate and Its Substitute Candidates

  • Kim, Hee-Su;Cheon, Yong-Pil;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • In the present study, we employed Hershberger assay to determine possible androgenic or antiandrogenic activities of three di-2-ethylhexyl phthalate (DEHP) substitute candidates. The assay was carried out using immature castrated Sprague-Dawley male rats. After 7 days of the surgery, testosterone propionate (TP, 0.4 mg/kg/day) and test materials (low dose, 40 mg/kg/day; high dose, 400 mg/kg/day) were administered for 10 consecutive days by subcutaneous (s.c.) injection and oral gavage, respectively. Test materials were DEHP, 2-ethylhexyl oleate (IOO), 2-ethylhexyl stearate (IOS) and triethyl 2-acetylcitrate (ATEC). The rats were necropsied, and then the weights of five androgen-dependent tissues [ventral prostate, seminal vesicle, coagulating glands, levator ani-bulbocavernosus (LABC) muscle, paired Cowper's glands, and glans penis] and four androgen-insensitive tissues (kidney, adrenal glands, spleen and liver) were measured. All test materials including DEHP did not exhibit any androgenic activity in the assay. On the contrary, antiandrogen-like activities were found in all test groups, and the order of the intensity was ATEC < DEHP < ISO < IOO in the five androgen-sensitive tissues. There was no statistical difference between low dose treatment and high dose treatment of all replacement candidate groups. In DEHP groups, high dose treatment exhibited significant weight gains in LABC and Glan Penis. There was no statistical difference in androgen-insensitive tissue measurements. Since the effects of ATEC treatment on the accessory sex organs were much less or not present at all when compared to those of DEHP, ATEC could be a strong candidate to replace DEHP. IOO treatment brought most severe weight reduction in all of androgen-sensitive tissues, so this material should be excluded for further screening of DEHP substitute selection.

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application (하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자)

  • Lee, Eun-Hee;Choa, Yong-Ho;Kim, Chang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Purification, Characterization and Immobilization of Lipase from Proteus vulgaris OR34 for Synthesis of Methyl Oleate

  • Misbah, Asmae;Koraichi, Saad Ibnsouda;Jouti, Mohamed Ali Tahri
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.491-505
    • /
    • 2020
  • A newly isolated strain, Proteus vulgaris OR34, from olive mill waste was found to secrete an alkaline extracellular lipase at 11 U·ml-1 when cultivated on an optimized liquid medium. This lipase was purified 94.64-fold with a total yield of 9.11% and its maximal specific activity was shown to be 3232.58 and 1777.92 U·mg-1 when evaluated using the pH-stat technique at 55℃ and pH 9 and Tributyrin TC4 or olive oil as the substrate. The molecular mass of the pure OR34 lipase was estimated to be around 31 kDa, as revealed by SDS-PAGE and its substrate specificity was investigated using a variety of triglycerides. This assay revealed that OR34 lipase preferred short and medium chain fatty acids. In addition, this lipase was stable in the presence of high concentrations of bile salt (NaDC) and calcium ions appear not to be necessary for its activity. This lipase was inhibited by THL (Orlistat) which confirmed its identity as a serine enzyme. In addition, the immobilization of OR34 lipase by adsorption onto calcium carbonate increased its stability at higher temperatures and within a larger pH range. The immobilized lipase exhibited a high tolerance to organic solvents and retained 60% of its activity after 10 months of storage at 4℃. Finally, the OR34 lipase was applied in biodiesel synthesis via oleic acid mediated esterification of methanol when using hexane as solvent. The best conversion yield (67%) was obtained at 12 h and 40℃ using the immobilized enzyme and this enzyme could be reused for six cycles with the same efficiency.