DOI QR코드

DOI QR Code

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Jang, Min (Department of Environmental Engineering, Kwangwoon University) ;
  • Park, Chang Min (Department of Environmental Engineering, Kyungpook National University) ;
  • Han, Jonghun (Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon) ;
  • Yoon, Yeomin (Department of Civil and Environmental Engineering, University of South Carolina)
  • Received : 2019.07.22
  • Accepted : 2019.11.19
  • Published : 2020.06.25

Abstract

This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

Keywords

References

  1. B. Hu, B. Fugetsu, H. Yu, Y. Abe, Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard Mater. 217-218 (2012) 85-91. https://doi.org/10.1016/j.jhazmat.2012.02.071
  2. H.A. Alamudy, K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid, Chem. Eng. J. 349 (2018) 595-602. https://doi.org/10.1016/j.cej.2018.05.137
  3. S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of $Cs^+$ from aqueous solution, Separ. Purif. Technol. 175 (2017) 255-265. https://doi.org/10.1016/j.seppur.2016.11.028
  4. J. Jang, D.S. Lee, Magnetic prussian blue nanocomposites for effective cesium removal from aqueous solution, Ind. Eng. Chem. Res. 55 (2016) 3852-3860. https://doi.org/10.1021/acs.iecr.6b00112
  5. X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li, F. Chi, Y. Xie, S. Yu, C. Xiao, F. Luo, J. Wang, X. Wang, C. Chen, W. Wu, W. Shi, S. Wang, X. Wang, Synthesis of novel nanomaterials and their application in efficient removal of radionuclides, Sci. China Chem. 62 (2019) 933-967. https://doi.org/10.1007/s11426-019-9492-4
  6. G. Gurboga, H. Tel, Y. Altas, Sorption studies of cesium on $TiO2-SiO_2$ mixed gel spheres, Separ. Purif. Technol. 47 (2006) 96-104. https://doi.org/10.1016/j.seppur.2005.06.008
  7. P.Y. Chen, The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition, Electrochim. Acta 52 (2007) 5484-5492. https://doi.org/10.1016/j.electacta.2007.03.010
  8. A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, R. Zarghami, Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution, Chem. Eng. J. 172 (2011) 572-580. https://doi.org/10.1016/j.cej.2011.06.011
  9. X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents, Bioresour. Technol. 160 (2014) 142-149. https://doi.org/10.1016/j.biortech.2014.01.012
  10. X.H. Fang, F. Fang, C.H. Lu, L. Zheng, Removal of $Cs^+$, $Sr^{2+}$, and $Co^{2+}$ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl. Eng. Technol. 49 (2017) 556-561. https://doi.org/10.1016/j.net.2016.11.008
  11. L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere 229 (2019) 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198
  12. L. Joseph, B.M. Jun, M. Jang, C.M. Park, J.C. Munoz-Senmache, A.J. Hernandez-Maldonado, A. Heyden, M. Yu, Y. Yoon, Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: a review, Chem. Eng. J. 369 (2019) 928-946. https://doi.org/10.1016/j.cej.2019.03.173
  13. A. Abusafa, H. Yucel, Removal of $^{137}Cs$ from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite, Separ. Purif. Technol. 28 (2002) 103-116. https://doi.org/10.1016/S1383-5866(02)00042-4
  14. Y. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN), Chem. Eng. J. 162 (2010) 685-695. https://doi.org/10.1016/j.cej.2010.06.026
  15. B.M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res. 12 (2019) 471-487. https://doi.org/10.1007/s12274-018-2225-3
  16. S. Li, L. Wang, J. Peng, M. Zhai, W. Shi, Efficient thorium(IV) removal by two-dimensional $Ti_2CT_x$ MXene from aqueous solution, Chem. Eng. J. 366 (2019) 192-199. https://doi.org/10.1016/j.cej.2019.02.056
  17. A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Two-dimensional $Ti_3C_2T_x$ MXene nanosheets for efficient copper removal from water, ACS Sustain. Chem. Eng. 5 (2017) 11481-11488. https://doi.org/10.1021/acssuschemeng.7b02695
  18. L. Wang, W. Tao, L. Yuan, Z. Liu, Q. Huang, Z. Chai, J.K. Gibson, W. Shi, Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment, Chem. Commun. 53 (2017) 12084-12087. https://doi.org/10.1039/C7CC06740B
  19. P. Gu, J. Xing, T. Wen, R. Zhang, J. Wang, G. Zhao, T. Hayat, Y. Ai, Z. Lin, X. Wang, Experimental and theoretical calculation investigation on efficient Pb(II) adsorption on etched $Ti_3AlC_2$ nanofibers and nanosheets, Environ. Sci. Nano 5 (2018) 946-955. https://doi.org/10.1039/C8EN00029H
  20. A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite, J. Hazard Mater. 344 (2018) 811-818. https://doi.org/10.1016/j.jhazmat.2017.11.026
  21. B.M. Jun, T.P.N. Nguyen, Y.K. Kim, H.K. Lee, Y.N. Kwon, Surface modification of TFC FO membrane using N-isopropylacrylamide (NIPAM) to enhance fouling resistance and cleaning efficiency, Desalin. Water Treat. 65 (2017) 11-21. https://doi.org/10.5004/dwt.2017.2031710
  22. B.M. Jun, S. Kim, J. Heo, N. Her, M. Jang, C.M. Park, Y. Yoon, Enhanced sonocatalytic degradation of carbamazepine and salicylic acid using a metal-organic framework, Ultrason. Sonochem. 56 (2019) 174-182. https://doi.org/10.1016/j.ultsonch.2019.04.019
  23. J. Han, B.M. Jun, J. Heo, S. Kim, Y. Yoon, C.M. Park, Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure, Ecotoxicol. Environ. Saf. 182 (2019) 109396-109404. https://doi.org/10.1016/j.ecoenv.2019.109396
  24. B.M. Jun, T.P.N. Nguyen, S.H. Ahn, I.C. Kim, Y.N. Kwon, The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system, J. Appl. Polym. Sci. 132 (2015) 42198-42206.
  25. T.P.N. Nguyen, B.M. Jun, Y.N. Kwon, The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane, J. Membr. Sci. 523 (2017) 111-121. https://doi.org/10.1016/j.memsci.2016.09.020
  26. B.M. Jun, H.K. Lee, Y.N. Kwon, Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment, Chem. Eng. J. 332 (2018) 419-430. https://doi.org/10.1016/j.cej.2017.09.062
  27. B.M. Jun, H.K. Lee, Y.I. Park, Y.N. Kwon, Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: change of the surface/permeability properties, Polym. Degrad. Stab. 162 (2019) 1-11. https://doi.org/10.1016/j.polymdegradstab.2019.02.008
  28. B.M. Jun, S.H. Kim, S.K. Kwak, Y.N. Kwon, Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes, Appl. Surf. Sci. 444 (2018) 387-398. https://doi.org/10.1016/j.apsusc.2018.03.078
  29. B.M. Jun, S. Kim, Y. Kim, N. Her, J. Heo, J. Han, M. Jang, C.M. Park, Y. Yoon, Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework, Chemosphere 231 (2019) 82-92. https://doi.org/10.1016/j.chemosphere.2019.05.076
  30. S.W. Han, W. Kim, Y. Lee, B.M. Jun, Y.N. Kwon, Investigation of Hydrate-induced Ice Desalination (HIID) and its application to a pretreatment of reverse osmosis (RO) process, Desalination 395 (2016) 8-16. https://doi.org/10.1016/j.desal.2016.05.023
  31. G. Zou, J. Guo, Q. Peng, A. Zhou, Q. Zhang, B. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation, J. Mater. Chem. 4 (2016) 489-499. https://doi.org/10.1039/C5TA07343J
  32. A.K. Fard, G. McKay, R. Chamoun, T. Rhadfi, H. Preud'Homme, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent, Chem. Eng. J. 317 (2017) 331-342. https://doi.org/10.1016/j.cej.2017.02.090
  33. C. Jung, J. Heo, J. Han, N. Her, S.J. Lee, J. Oh, J. Ryu, Y. Yoon, Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes, Separ. Purif. Technol. 106 (2013) 6-71.
  34. B.M. Jun, J. Heo, C.M. Park, Y. Yoon, Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework, Chemosphere 235 (2019) 527-537. https://doi.org/10.1016/j.chemosphere.2019.06.208
  35. X. Dong, Y. Wang, M. Jia, Z. Niu, J. Cai, X. Yu, X. Ke, J. Yao, X. Zhang, Sustainable and scalable in-situ synthesis of hydrochar-wrapped $Ti_3AlC_2$-derived nanofibers as adsorbents to remove heavy metals, Bioresour. Technol. 282 (2019) 222-227. https://doi.org/10.1016/j.biortech.2019.03.010
  36. B.M. Jun, H.S. Hwang, J. Heo, J. Han, M. Jang, J. Sohn, C.M. Park, Y. Yoon, Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: performance and mechanism of competitive adsorption, J. Ind. Eng. Chem. 79 (2019) 345-352. https://doi.org/10.1016/j.jiec.2019.07.009
  37. S.M. Mirsoleimani-azizi, P. Setoodeh, S. Zeinali, M.R. Rahimpour, Tetracycline antibiotic removal from aqueous solutions by MOF-5: adsorption isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng. 6 (2018) 6118-6130. https://doi.org/10.1016/j.jece.2018.09.017
  38. L. Zhang, J. Wei, X. Zhao, F. Li, F. Jiang, M. Zhang, X. Cheng, Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate, Chem. Eng. J. 302 (2016) 733-743. https://doi.org/10.1016/j.cej.2016.05.040
  39. S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard Mater. 274 (2014) 46-52. https://doi.org/10.1016/j.jhazmat.2014.04.001
  40. X. Zheng, J. Dou, J. Yuan, W. Qin, X. Hong, A. Ding, Removal of $Cs^+$ from water and soil by ammonium-pillared montmorillonite/$Fe_3O_4$ composite, J. Environ. Sci. 56 (2017) 12-24. https://doi.org/10.1016/j.jes.2016.08.019
  41. J.A. Suarez-Navarro, L. Pujol, Determination of potassium concentration in salt water for residual beta radioactivity measurements, Radiat. Meas. 38 (2004) 145-151. https://doi.org/10.1016/j.radmeas.2003.09.007
  42. F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, N. Wu, Visible light photocatalytic activity of nitrogen-doped $La_2Ti_2O_7$ nanosheets originating from band gap narrowing, Nano Res. 5 (2012) 213-221. https://doi.org/10.1007/s12274-012-0201-x
  43. S. Zhao, D. Chen, F. Wei, N. Chen, Z. Liang, Y. Luo, Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling, Ultrason. Sonochem. 39 (2017) 845-852. https://doi.org/10.1016/j.ultsonch.2017.06.013
  44. J. Han, B.M. Jun, J. Heo, G. Lee, Y. Yoon, C.M. Park, Highly efficient organic dye removal from waters by magnetically recoverable $La_2O_2CO_3/ZnFe_2O_4$-reduced graphene oxide nanohybrid, Ceram. Int. 45 (2019) 19247-19256. https://doi.org/10.1016/j.ceramint.2019.06.173

Cited by

  1. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects vol.27, pp.33, 2020, https://doi.org/10.1007/s11356-020-10348-4
  2. Review-Ti3C2Tx MXene: An Emerging Two-Dimensional Layered Material in Water Treatment vol.10, pp.4, 2021, https://doi.org/10.1149/2162-8777/abf2de
  3. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): a review vol.45, pp.22, 2020, https://doi.org/10.1039/d1nj00772f
  4. Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide vol.329, pp.1, 2020, https://doi.org/10.1007/s10967-021-07766-0
  5. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities vol.41, pp.4, 2021, https://doi.org/10.1080/02603594.2021.1922396
  6. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater vol.421, pp.2, 2020, https://doi.org/10.1016/j.cej.2020.127780
  7. Host-Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications vol.15, pp.10, 2020, https://doi.org/10.1021/acsnano.1c04423
  8. Titanium Carbide‐Based Adsorbents for Removal of Heavy Metal Ions and Radionuclides: From Nanomaterials to 3D Architectures vol.8, pp.21, 2021, https://doi.org/10.1002/admi.202100703
  9. A comprehensive review on the synthesis and applications of ion exchange membranes vol.282, 2020, https://doi.org/10.1016/j.chemosphere.2021.130817
  10. In situ synthesis of novel peroxo-functionalized Ti3C2Tx adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups vol.286, pp.p2, 2020, https://doi.org/10.1016/j.chemosphere.2021.131801
  11. MXenes as emerging nanomaterials in water purification and environmental remediation vol.811, 2022, https://doi.org/10.1016/j.scitotenv.2021.152280