• Title/Summary/Keyword: Oil-in-water emulsion

Search Result 386, Processing Time 0.027 seconds

Scanning Electron Microscopic Study of Slime Formations in a Water Injection Station of Oil India Limited in Assam, India

  • Bhagobaty, Ranjan K.;Purohit, S.;Nihalani, M.C.
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.249-253
    • /
    • 2015
  • Microorganisms specifically groups of bacteria exhibiting physiological activities of production of acids are a major cause of concern because of their ability to induce corrosion in oil field pipelines and metal systems involved in water handling. Water Injection Stations as a means of secondary recovery from existing oil producing reservoirs, are often employed in most upstream oil and gas industries to ensure replenishment of voidage, maintenance of reservoir pressure and optimization of crude emulsion throughput. In the present study, scanning electron microscopy of macroscopic orange coloured slime formations sampled from leaking valves on the flow-lines of a Water Injection Stations of Oil India Limited revealed the presence of filamentous bacterial mats in association with diatoms. The species composition of the acidic slime formations from the sampled locations reveal the possible role of acid producing iron oxidizing bacteria (IOB) like Acidithiobacillus ferrooxidans in association with Gomphonema sp. in creating conditions for bio-corrosion.

RHEOLOGICAL CONSISTENCY OF CONCENTRATED WATER-IN-OIL EMULSION

  • Park, C-I.;Yang, J-C.;Cho, W-G.;S-H. Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-133
    • /
    • 1998
  • We have studied a relationship between the pattern of complex modulus change versus internal phase volume ratio and the rheological consistency of concentrated W/O emulsions with Magnesium Sulfate in the range 0.0 to 0.5 wt% and with different oil polarities, respectively. The rheological consistency with time of concentrated W/O emulsion was checked using Fudoh Rheometer and the coalescence of deformed water droplets was examined using polarized light microscope(LEICA DMRP). To find the pattern of complex modulus change of the concentrated emulsions versus internal phase volume ratio, the effect of varying water phase volume fraction from 0.78 up to 0.85 on viscoelastic measurements was investigated using rotational rheometer (HAAKE Rheostress RS 50). The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The greater the increase of complex modulus was, the less coalescence occurred and the more consistent the concentrated emulsions were. And the pattern of complex modulus increase versus volume ratio has been explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsion.

  • PDF

Preparation of magnetic gelatin microspheres for the targeting of drugs

  • Lee, Kang-Choon;Koh, Ik-Bae;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 1986
  • Magnetically reponsive gelatin microspheres for the targeting of drugs have been prepared using a water-in-oil emulsion technique with chemical cross-linking of the protein. The manufacturing variables affecting microsphere size, size distribution and surface characteristics have been examined as well as the magnetic responsiveness in vitro. Sesame oil was utilized for non-aqueous phase and magentic gelatin microspheres of different size from 1. 89 to 14.88 $\mu\textrm{m}$ in mean diameter could be obtained with variation of HLB values of non-ionic surfactants. The content of magnetite which uniformly distributed throughout the microspheres was 26.7% (w/w). It was possible to control the localization of magnetic gelatin microspheres at specific sites within capilary models by using external magnetic field of under 5K gauss.

  • PDF

An Approach to Manufacture of Fresh Chicken Sausages Incorporated with Black Cumin and Flaxseed Oil in Water Gelled Emulsion

  • Kavusan, Hulya Serpil;Serdaroglu, Meltem;Nacak, Berker;Ipek, Gamze
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.426-443
    • /
    • 2020
  • In order to investigate the use of oil in water gelled emulsion (GE) prepared with healthier oil combinations as beef fat replacer in the fresh chicken sausage formulations, four batches of fresh sausages were produced. The first batch was control (C) sample formulated with %100 beef fat, other batches were codded as GE50, GE75, and GE100 respective to the percentage of beef fat replaced with GE. The addition of GE to sausage formulation resulted in an increment in moisture and protein contents while a decrement was observed in fat content (p<0.05). pH, cooking yield and water holding capacity values of GE added samples were found lower than C (p<0.05). GE addition caused lower CIE L* values in samples, however, this trend was not observed in CIE a* and CIE b* values. Initially, the lowest peroxide and the highest TBARS values were recorded in GE100 samples on the 0th d (p<0.05). Peroxide and TBARS values were in the limits. The texture of samples was softened while total saturated fatty acid content reduced up to 52.61% with the incorporation of GE (p<0.05). Taken together, our results showed that GEs can be used as fat replacers in meat product formulations without causing undesirable quality changes.

Preparation of Resveratrol-loaded Poly($\varepsilon$-caprolactone) Nanoparticles by Oil-in-water Emulsion Solvent Evaporation Method

  • Kim, Bum-Keun;Lee, Jun-Soo;Oh, Ju-Kyoung;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.157-161
    • /
    • 2009
  • Resveratrol-loaded poly($\varepsilon$-caprolactone) (PCL) nanoparticles were prepared by oil in water (O/W) emulsion solvent evaporation method. The morphology of the nanoparticles was evaluated using atomic force microscope (AFM), in which well-shaped and rigid nanoparticles were prepared. The mean particle size of nanoparticles prepared using only dichloromethane (DCM) ($523.5{\pm}36.7\;nm$) was larger than that prepared with a mixture of DCM and either ethanol (EtOH) ($494.5{\pm}29.2\;nm$) or acetone ($493.5{\pm}6.9\;nm$). The encapsulation efficiency of nanoparticles prepared only with DCM as dispersed phase ($78.3{\pm}7.7%$) was the highest of those prepared with solvent mixtures. An increase in the molecular weight of PCL led to an increase in encapsulation efficiency (from $78.3{\pm}7.7$ to $91.4{\pm}3.2%$). Pluronic F-127 produced the smallest mean size ($523.5{\pm}36.7\;nm$) with the narrowest particle size distribution. These results show that dispersed phase, molecular weight of wall materials, emulsion stabilizer could be important factors to affect the properties of nanoparticles.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

Microencapsulation of Anchovy Oil by Sodium Alginate (알긴산소다를 이용한 멸치어유의 미세캡슐화)

  • 임상빈;좌미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.890-894
    • /
    • 1999
  • Microencapsulation of anchovy oil as a core material in sodium alginate as a wall material was inves tigated. Microencapsulation was accomplished by injecting an oil/water emulsion, consisting of a mixture of liquefied sodium alginate and emulsifier, under high pressure through an orifice submerged in a calcium lactate solution. Microcapsules suspended in a dispersion fluid were observed under a fluorescence mi croscope to verify the presence of the capsules and to note coalescence or degradation of the capsules. Optimum conditions for microencapsulation of anchovy oil were obtained when 1.0% aqueous solution of sodium alginate contained 3% of a 1:1 ratio of ESPR 25(polyglycerine+polylinoleate) and TW 20(sorbitan laurate+ethylene oxide) as an emulsifier in terms of capsule size and size distribution, and emulsion stability. The airless sprayer produced microcapsules with a diameter between 15.9 and 73.9 m with different concentration of a wall material. The optimum mixing ratio of wall material to core material was 90:10(wt/wt). 0.2% calcium lactate was appropriate as a dispersion fluid.

  • PDF

Demulsification of Petroleum Emulsion by Streptomyces sp. 8321 (Streptomyces sp. 8321에 의한 석유 유상액의 탈유화)

  • Ko, Sung-Hwan;Lee, Deuk-Soo;Kim, Sang-Jin;Lee, Hong Kum
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.162-168
    • /
    • 1998
  • The characteristics of demulsification of petroleum emulsion by Streptomyces sp. 8321 were investigated. Demulsification ability of Streptomyces sp. 8321 appeared to be confined within the spores. Spore surface hydrophobicity was increased with culture age stimulating the demulsification ability. Over $1.1{\times}10^8spores/ml$ completely demulsified kerosene-0.2% Triton X-100 (2:1) emulsion. Among the low viscosity hydrocarbons, hydrocarbons with longer chain such as n-hexadecane and diesel were more rapidly demulsified. However, only 20-30% of the emulsion with high viscosity hydrocarbons was demulsified after 24 hours. Oil-in-water emulsions made by Corexit, Finalsol and BP series surfactants were completely demulsified within one minute. Demulsification rate ($t_{1/2}$) of oil-in-water emulsions made by Corexit 7664, 8667, Triton X-100 and Tween 80 decreased as their concentration increased. In case of water-in-oil emulsion made by Seagreen, $t_{1/2}$ was over 24 hours. Therefore, demulsification ability of Streptomyces sp. 8321 was more effective on oil-in-water emulsions.

  • PDF

Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters

  • Racz, Gabor;Kerker, Steffen;Schmitz, Oliver;Schnabel, Benjamin;Kovacs, Zoltan;Vatai, Gyula;Ebrahimi, Mehrdad;Czermak, Peter
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.237-249
    • /
    • 2015
  • In this study we investigate a laboratory scale vacuum membrane distillation system to produce pure water from model oil in water emulsion. Experimental determination of liquid entry pressure (LEP) of a commercial Durapore$^{TM}$ GVPH flat sheet membrane using model emulsions in various oil concentrations has been carried out. Two different methods of liquid entry pressure determination - a frequently used, so-called static and a novel dynamic method - have been investigated. In case of static method, LEP value was found to be 2.3 bar. No significant effect of oil content on LEP was detected up to 3200 ppm. In contrast, LEP values determined with dynamic method showed strong dependence on the oil concentration of the feed and decreased from 2.0 bar to a spontaneous wetting at 0.2 bar in the range 0-250 ppm, respectively. Vacuum membrane distillation tests were also performed. The separation performance is evaluated in terms of flux behavior, total organic carbon removal and droplet size distribution of the feed and final retentate. No significant effect of oil content on the flux was found ($5.05{\pm}0.31kgm^{-2}h^{-1}$) up to 250 ppm, where a spontaneous wetting occurred. High separation performance was achieved along with the increasing oil concentration between 93.4-97.0%.

Preparation and Stabilization of an O/W Emulsion Using Liquid Crystalline Phases (액정상을 이용한 O/W형 에멀젼의 제조 및 제형 안정화에 관한 연구)

  • An, Bong-Jeun;Lee, Jin-Tae;Lee, In-Chol;Kwak, Jae-Hoon;Park, Jung-Mi;Park, Chan-Ik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • Liquid crystalline phases were formed from acylglutamate; polyglyceryl-10 myristate and glycerine mixture and they were used as a base material for preparing an O/W emulsion. When an oil phase is added into the liquid crystalline phases, it was inserted into the dispersed liquid crystal droplets rather than stayed outside the liquid crystals, which can be known by the fact that the size of liquid crystal droplets increases with the increasing oil phase content. Along with the increase in the droplet size, the complex modulus increases from 100 to 350 pascals and the loss angle decreases from 60 to 24 degrees, from which it can be known that the increase in the internal phase volume results in the increase in the elastic property of oil in liquid crystalline-phases (O/LC). When the water phase was lastly added into the O/LC phase, the emulsification occurred to form a O/W emulsion and the averaged particle size of the O/W emulsion changes from 22.5nm to 538nm with the addition of water phase. The results from the droplet size measurements and stability tests under accelerated conditions such as high temperature show that the obtained O/W emulsion is very consistent with time.