• Title/Summary/Keyword: Oil-degrading microorganisms

Search Result 24, Processing Time 0.026 seconds

Biodegradation of Hydrocarbon Contamination by Immobilized Bacterial Cells

  • Rahman Raja Noor Zaliha Abd.;Ghazali Farinazleen Mohamad;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.354-359
    • /
    • 2006
  • This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.

Degradation of Phenanthrene by Bacterial Strains Isolated from Soil in Oil Refinery Fields in Korea

  • KIM JEONG DONG;SHIM SU HYEUN;LEE CHOUL GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.337-345
    • /
    • 2005
  • The degradation of phenanthrene, a model PAH compound, by microorganisms either in the mixed culture or individual strain, isolated from oil-contaminated soil in oil refmery vicinity sites, was examined. The effects of pH, temperature, initial concentration of phenanthrene, and the addition of carbon sources on biodegradation potential were also investigated. Results showed that soil samples collected from four oil refinery sites in Korea had different degrees of PAH contamination and different indigenous phenanthrene-degrading microorganisms. The optimal conditions for phenanthrene biodegradation were determined to be 30$^{circ}C$ and pH 7.0. A significantly positive relationship was observed between the microbial growth and the rate of phenanthrene degradation. However, the phenanthrene biodegradation capability of the mixed culture was not related to the degree of PAH contamination in soil. In low phenanthrene concentration, the growth and biodegradation rates of the mixed cultures did not increase over those of the individual strain, especially IC10. High concentration of phenanthrene inhibited the growth of microbial strains and biodegradation of phenanthrene, but was less inhibitory on the mixed culture. Finally, when non-ionic surfactants such as Brij 30 and Brij 35 were present at the level above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited and delayed by the addition of Triton X100 and Triton N101.

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J.;Simons, Keryn L.;Kadali, Krishna K.;Patil, Sayali S.;Ball, Andrew S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1185-1192
    • /
    • 2012
  • This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms (지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향)

  • 손재학;권개경;김상진
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

Characterization of Bunker Oil-Related Compounds Degrading Bacteria Isolated from Pusan Coastal Waters (부산근해에서 분리한 Bunker Oil 관련화합물 분해세균의 특성)

  • Choi, Jin;Kim, Jong-Goo;Park, Geun-tae;Son, Hong-Joo;Kim, Hee-Gu;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.451-456
    • /
    • 1999
  • Microorganisms utilizing petroleum as substrate were screened from the seawater in Pusan coastal area. Among them, fifty strains utilized bunker-A oil as a sole carbon and energy source. Five of these fifty strains were selected to experiment this study. According to the taxonomic characteristics of its morphological, cultural and biochemical properties, the selected stains were named Pseudomonas sp. EL-12, Flavobacterium sp. EL-15, Acinetobacter sp. EL-18, Enterobacter sp. EL-27 and Micrococcus sp. EL-43, respectively. The optimal medium compositions and cultural conditions for assimilation of bunker-A oil by the selected strains were 1.5-2% bunker-A oil, 0.1% $NH_4NO_3$, 1-1.5% $MgSO_4$.$7H_2O$, 0.05-0.15% KCl, 0.1-0.15% $CaCl_2$.$2H_2O$, 2.5-3.5% NaCl, initial pH 8-9, temperature 3$0^{\circ}C$ and aeration, respectively. The utilization and degradation characteristics on the various hydrocarbons by the selected stains were showed that bunker oil, n-alkane and branched alkane compounds were highly activity than cyclic alkane and aromatic hydrocarbon compounds.

  • PDF

미생물을 이용한 원유 및 원유제품의 분해 특성

  • O, Gyeong-Taek;Park, Gwi-Hwan;Lee, Jeong-Il;Lee, Jung-Gi;Kim, Seong-Jun;Motoki, Kubo;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.435-438
    • /
    • 2000
  • Crude oil-degrading microorganisms, Acinetobacter sp. A132, Pseudomonas aeruginosa F722, and Acinetobacter calcoaceticus OM1 were isolated from soil and sea. The optimal temperature of strain A132 and strain F722 on growth isolated from soil was $35^{\circ}C$ both, and also their growth were optimized at pH 8 and 9, respectively. The growth of the strains, A132 and F722, showed that crude oil of 2% (w/v) in culture broth in which crude oil was used as carbon and energy sources appeared to be an optimum. Optimal culture conditions of strain OM1 were different from those of the soil microorganisms except for temperature. The growth of strain OM1 was optimized at pH 7 and crude oil of 3.0% (w/v). The degradability to crude oil by strain A132 showed maximum $5.49g/\;l\;{\cdot}\;day$ under the conditions of $25^{\circ}C$, NaCl of 1.0% (w/v), and crude oil of 2.0% (w/v). The highest degradability of strain F722 to crude oil was $1.19g/\;l\;{\cdot}\;day$ under the culture conditions at $35^{\circ}C$, NaCl 1.0% (w/v), and crude oil of 2.0% (w/v). The degradation characteristics of kerosene $(nC_9-nC_{20})$ and diesel $(nC_9-nC_{28})$ by strain OM1, and F722 were analyzed by gas chromatography. Strain OM1 degraded more than 95% of kerosene and 75% of diesel for 7 days cultivation. Strain F722 showed degradation of more than 80% to kerosene in 10 days.

  • PDF

Biodegradation of Crude Oil and Petroleum Products by Crude Oil-degrading Microorganism (미생물을 이용한 원유 및 원유제품의 분해 특성)

  • 정선용;오경택;박귀환;이정일;이중기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.247-254
    • /
    • 2002
  • Two kinds of crude oil-degrading microorganisms from soil and one kind from sea were isolated and named strain Al32, strain F722 and strain OM1, respectively. These microorganism were identified Acinetobacter sp., Pseudomonas aeruginosa and Acinetobacter calcoaceticus, respectively. The optimum cultivation temperature of Acinetobacter sp. A132 and P. aeruginosa F722 was $35^{\circ}C$ and optimum growth pH was 8 and 9, respectively. The growth was the highest at 2.0% (w/v) substrate concentration when crude oil was only carbon source. The growth of A. calcoaceticus OM1 isolated from sea was the highest at 3.0% (w/v) of crude oil. In inspection of crude oil degradability, strain Al32 showed 5.49 g/L.day with Eleuthera (OMAN), 2.0% (w/v). P. aeruginosa F722 showed 1.19 g/L g/L.day with L-Zakum (AFRICA). In case of kerosene $nC_9\simnC_{20}$ and diesel $nC_9\simnC_{28}$, A. calcoaceticus OM1 was degraded 95% and 75%, respectively, for 7 days culture, and P. aeruginosa F722 was 80% after 10 days.