• Title/Summary/Keyword: Oil supply system

Search Result 212, Processing Time 0.028 seconds

Experimental Study of Tribological Properties According to Oil Grade (오일 등급에 따른 트라이볼로지 특성의 관한 실험적 고찰)

  • Lee, Jong-Ho;Seo, Kuk-Jin;Hwang, Youn-Hoo;Han, Jae-Ho;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.246-252
    • /
    • 2021
  • Among the engine components of an internal combustion engine, the valve train is a series of systems that supply intake gas to the combustion chamber and operate intake and exhaust valves that discharge exhaust gas. If excessive wear occurs in the valve train system, the suction and exhaust valves do not open and close on time, which leads to abnormal combustion and exhaust gas. In this study, we conduct experiments and analyses on friction and wear characteristics of the valve train system. Moreover, we experimentally study the correlation between the pinball and pinball cap on engine oil lubrication, friction experiment, wear amount analysis, and surface analysis. Specifically, we experiment using Ball on reciprocating tribo-tester and apply commercial engine oil sold on the market engine oil. We construct the experimental conditions for each new oil and oil. Accordingly, the completed specimen was subjected to a confocal microscope to check the wear volume, observe the surface of the specimen, and confirm the elemental components using a scanning microscope (SEM) and an energy dispersion X-ray spectrometer (EDS). Through this experiment, we analyze the friction and wear characteristics of valve train components according to engine oil grade, and the obtained data serve as an effective engine oil management method.

Thermal Analysis and Temperature Measurement of Tilting Pad Bearings Supporting a Power Turbine for the Supercritical CO2 Cycle Application (초임계 CO2 발전용 파워터빈을 지지하는 틸팅패드 베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Kim, Byungok;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.

Dynamic Characteristics of Clutch System for an Automatic Transmission (자동변속기 클러치 시스템의 동특성 해석)

  • Kim, Ju Hwan;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.284-294
    • /
    • 1996
  • In this paper, dynamic characteristics of an AT clutch system were investigated considering the dynamics of check ball and hydraulic control valves. Dynamic model of a pressure control solenoid valve (PCSV) was obtained by Bondgraph and permeance method. Also, the clutch piston and check ball dynamics were modeled by considering the effect of centrifugal force of the oil entrapped in the clutch chamber. In order to validate the dynamic models obtained, plunger displacement of PCSV and pressure response of the clutch supply lines were compared with the available experimental data, which were in good accordance with the numerical results. Using the dynamic model of the clutch system, simulations were performed to investigate the effect of the rotational speed on the response of clutch cylinder pressure, clutch piston and check ball displacement, and oil flow rate into the cylinder and flow rate out of the check valve.

A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature (압력·온도 변화에 따른 초고압 발생기 성능특성 연구)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1249-1255
    • /
    • 2010
  • An ultra high- pressure system generally consists of a hydraulic power unit, an oil supply unit, an electrical power supply device, and an electrical control device. The hydraulic power unit supplies the hydraulic power to the intensifier to create generate ultra high pressure. The intensifier amplifies increases the pressure using the oil supplied from by the hydraulic power unit. The electrical supply devices and control devices maintain are provided for the electric motors, valves, and sensors. In this study, instead of a flow-control device, a pressure-control type device was mounted on a manifold block in the hydraulic power unit instead of the flow-control type. A servo valve was fitted in the intensifier, and the performance characteristics of the intensifier varied according to the variations of in the pressure cycle and with the temperature of the operating oil in the hydraulic power unit.

Development of High Efficiency Contactless Power Supply System for Stocker System (Stocker 시스템에 적용한 고효율 비접촉 전원시스템 개발)

  • Hwang, Gye-Ho;Kim, Won-Gon;Yun, Jong-Bo;Moon, In-Ho;Lee, Bong-Seob;Min, Byung-Jae;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.77-85
    • /
    • 2010
  • Recently, As increasing cleanroom size, Stocker system is trending the large size and long distance for LCD material transfer system In order to rise a rate of production, the manufacturer are on the decrease of total tact time with Stocker system And the manufacturer are requested to high speed of next generation Stocker system Also manufacturers for the high oil prices through energy-saving conservation to minimize plant operating costs are required. Therefore, this paper propose optimal design of high efficiency Contactless Power Supply(CPS) system about high speed and energy savings of next generation Stocker system This paper proposes CPS system is applied in the long distance and straight section with Stocker system for energy savings. The test results of input!output characteristic and efficiency of CPS system on operating pattern of Stocker system were analyzed, and proved the applicability on commercial use.

A study on the Safety of metro-railroad electric power feed system (도시철도 전력 급전시스템에 대한 안전성 연구)

  • Lee, Bong-Jae;Park, Weon-Chan;Kim, Woo-Seob;Jeong, Seong-Yeong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.390-398
    • /
    • 2008
  • While road traffic of sharp rise of an international oil price and capital Seoul reaches to critical point, and a use passenger drives recklessly on the subway which is a cradle of public transportation, the depths analyzes an electric power feed system regarding a ground wealth electric car line of the subway Line 2 East Section which is a long distance (Seongsu $\sim$ Gangbyeon), and future, electric power supply Feeder Distribution Center prepares to Operational Headway shortening along an ATO signal method change by feeder increase supplement, and ensure safety to an electric power supply system, and will solve inconvenience of safe operation and use passenger.

  • PDF

Failure of Hydraulic Oil Pipe and Transient Vibration (압유배관의 절손 원인 규명과 과도진동)

  • Kim, Yeon-Whan;Lee, Young-Shin;Koo, Jae-Raeyang;Kim, Hee-Su;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1268-1273
    • /
    • 2003
  • This paper presents a case history of piping failures on power plant. The root cause of the failure was defined to set the optimal countermeasures. The failure comes from transient vibration and the 1st stress increased at the hydraulic oil supply system of control valves for high pressure steam turbine.

  • PDF

Temperature Characteristics of High Speed Angular Contact Ball Bearing (고속 앵귤러 컨택트 볼 베어링의 온도특성)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

Thermohydrodynamic Analysis and Pad Temperature Measurement of a Tilting Pad Journal Bearing for a Turbine Simulator (터빈 시뮬레이터용 틸팅패드 저널베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.112-118
    • /
    • 2017
  • Tilting pad journal bearings(TPJBs) are widely used for high speed rotating machinery owing to their rotordynamic stability and thermal management feature. With increase in the rotating speed of such machinery, an increasingly important aspect of TPJB design is the prediction of their thermal behaviors. Researchers have conducted detailed investigations in the last two decades, which provided design tools for the TPJBs. Based on these previous studies, this paper presents a thermohydrodynamic(THD) analysis model for TPJBs. To calculate pressure distribution, we solve the generalized Reynolds equation and to predict the lubricant temperature, we solve the 3D energy equation. We employ the oil mixing theory to calculate pad inlet temperature; further, to consider heat conduction via the pad, we solve the heat conduction equation for the pads. We assume the shaft temperature as the averaged oil film temperature and apply natural convection boundary conditions to the pad side and back surfaces. To validate the analysis model, we compare the predicted pad temperatures with those from previous research. The results show good agreement with previous research. In addition, we conduct parametric studies on a TPJB which was used in a gas turbine simulator system. The predicted results show that film temperature largely depends on the rotating speed and oil supply condition.

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.