• Title/Summary/Keyword: Oil pressure

Search Result 1,409, Processing Time 0.025 seconds

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

A Study on the Model for Effective Hydraulic Fracturing by Using Guide Hole (유도홈을 이용한 효과적인 수압파쇄 모델연구)

  • Mun, Hong Ju;Shin, Sung Ryul;Lim, Jong Se;Jeong, Woo Keen;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.440-448
    • /
    • 2014
  • Hydraulic fracturing technique has been applied in various fields in order to improve the recovery of energy resources such as gas, oil and geothermal energy and research about finding out hydraulic fracturing mechanism and application has been steadily proceeded. In this study, for effective hydraulic fracturing, a scale modeling was progressed to simulate similarly with the actual site. In order to analyze the development aspect of surface crack initiation pressure during hydraulic fracturing followed by different conditions, the number of guide holes hydraulic fracturing test was carried out by setting up a hydraulic fracturing test equipment. Also, through the result, we tried to derive reliable results by comparing and analyzing the value of numerical modeling which is obtained based on the physical properties and mechanical properties with 3DEC, a three-dimensional discrete element method program. As a result, it is considered possible to generate effective crack using the guide hole.

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions - (수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

  • PDF

Effect of Lipid Mediated Glucose-Protein Reaction on Thermal Flayer Generation (당-단백질 가열반응 시에 생성되는 향기성분에 미치는 지질의 영향)

  • 주광지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • The contribution of lipid to thermal flayer generation from glucose-protein reaction was accomplished by isolating flavor compounds from casein-glucose (CG)and casein-glucose-coin oil (CGL) which were stored for 2 and 4 weeks at 6$0^{\circ}C$ and then reacted at 16$0^{\circ}C$ for 1hr. The volatiles from the reactant mixtures were isolated by a solvent extraction method with methylene chloride and analyzed by gas chromatography and gas chromatography-mass spectrometry. Pyrazine, methylpyrazine, 2,5-dimethylpyrazine, 2-dimethylpyrazine ,2-ethy-5- methyIpyrazine and 2-acetylpyrrole originated from interaction of thermal degradation of casein and lipid oxidation were identified in the CGL samples. It was also found that 3-methyl-1-butanol, 2-cyclopene-1,4-diode, heptanal, nonanal, and 2-heptanone were derived from lipid source. Two additional fatty acids, heptanoic acid and octanoic acid were also identified in the CGL samples. 5-Hydroxymethyl-2-furfural, the most abundant volatile, was responsible for the formation of sugar degradation product. The results suggested that the presence of lipid in the samples had more effect on the contribution of volatile formation of glucose-protein thermal reaction than the absence of lipid in the samples.

An experimental study on the improving noise characteristic of hydraulic power unit (유압동력 발생장치의 소음특성 개선을 위한 실험적 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.638-643
    • /
    • 2013
  • Nowadays, the hydraulic power unit (HPU) has been increased its working pressure and enlarged its capacity in order to improve the performance of the hydraulic system, but it produces noise leveled around 110dB(A) during operation. Recently, due to the reinforcement of industrial safety regulations and the requirement of improving work environment, a separated HPU room is installed at outside or underground of the building as to reduce the noise from HPU, but there are also problems of power loss owing its fluid friction of pipe system and of deficient accessibility during its failure accident. In this study, experiment is performed to improve the noise characteristics with installing a soundproof chamber to minimize the power loss and exclude effectively the high leveled noise, which is generated during the power conversion of HPU.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Initiation and Growth Behavior of Small Fatigue Cracks in the Degraded 2 1/4 Cr-1 Mo Steel (2 1/4 Cr-1 Mo강 劣化材의 微小 疲勞龜裂의 발생 및 진전거동)

  • 곽상국;장재영;권재도;최선호;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-62
    • /
    • 1992
  • Material can be degraded by using it for a long service under the high temperature and pressure circumstances, Therefore, material degradation can affect the strength of mechanical structures. At present, the life prediction of the degraded structures is considered as an important technical problem. In this paper, the degraded 21/4Cr-lMo steel is the material used for about 10 years around 400.deg. C in an oil refinery plant. The recovered one was prepared out of the above degraded steel by heat treatment for one hour at 650.deg. C. The degradation effect was investigated through the tension test, Hardness test and Charpy impact test. On the smooth surface material, the fatigue crack initiation, growth and coalescence stages of the distributed small cracks were investigated with photographs, and the crack length and density were measured. The measuring results were analyzed by quantative and statistical methods.

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.