• Title/Summary/Keyword: Oil extract

Search Result 826, Processing Time 0.025 seconds

The Antioxidant Activities of Three Solvent(Ether, Butanol, Water) Extrats from Chestnut Inner Shell in Soybean Oil (대두유에 대한 율피의 용매분획별(Ether, Butanol, Water) 항산화효과)

  • Oh, Seung-Hee;Kim, Yong-Wook;Kim, Myoung-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.6
    • /
    • pp.703-708
    • /
    • 2005
  • This study was carried out to compare the antioxidant activities of the ether, butanol, water extracts from chestnut inner shell(Castanea crenata Sieb. et Zucc.) with those of tocopherol and BHA in soybean oil. All additives were added to soybean oil on the quantities of 0.02%. Comparing the antioxidant activities under autooxidation condition at $45.0{\pm}0.5$ for 42days of the extracts were recorded in the order of butanol>ether>control>BHA>tocopherol depending on the solvent. Under the condition at $60.0{\pm}0.5^{\circ}C$ for 32days, the butanol extracts represented the high antioxidation effect, however, there was no significant differences between the ether extracts and control. Under thermal oxidation condition, the ether extract showed stronger antioxidant activity than those of the butanol extract. In the results of polyphenol compound analysis, ellagic acid, quercetin, morin, naringenin, flavanol were included in the ether extracts and ellagic acid, naringenin, gallic acid, flavanol were included in the butanol extracts, respectively. Among them, ellagic acid in ether extract and gallic acid and naringenin in butanol extracts seed to increase the antioxidant activities in the substrate oil.

Study of Antimicrobial Activity of New Zealand's Tea Tree Essential Oil, Grapefruit Seed Extract and its major Component.

  • Han, Chang-Giu;Lee, Young-Woon;Zhoh, Choon-Koo;Kim, Byung-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.17-41
    • /
    • 1999
  • Manuka oil sometime named New Zealand's tea tree oil is soluble in oil and come from nature. The $\alpha$-pinene extracted from Manuka oil and R-limonene which is one of the component of extracted Citrex from Grapefruit were used to estimate the antimicrobial activity and to improve the capability of antiseptic. Disk diffusion and broth dilution methods were used to measure the antimicrobial activity. Escherichia coli which is gram-negative bacteria and Staphylococcus aureus which is gram-positive bacteria were used as strain. The antimicrobial activity of Manuka oil and $\alpha$-pinene for Escherichia coli, Staphylococcus aureus is similar when the concentration of Manuka oil and $\alpha$-pinene is $10{\mu}l$. However, Antimicrobial activity of Manuka oil for Escherichia coli, Staphylococcus aureus is better than that of $\alpha$-pinene when the concentration of Manuka oil and $\alpha$-pinene is low. Antimicrobial activity of Citrex is superior to that of R-limonene. The proper ratio of Maunka oil and Citrex can improve the antimicrobial activity. The proper ratio obtained from studies was 75% of Maunka oil and 25% Citrex for Escherichia coli, 25% of Maunka oil and 75% Citrex for Staphylococcus aureus.

  • PDF

An investigation on the in si·tu measurement of the oil-concentration with densimeter (밀도계를 이용한 비추출식 냉동기유농도 측정에 관한 연구)

  • Kim, S.H.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method to measure the oil concentration is to extract the working mixture and then to measure the oil weight. However, it is Quite necessary to estimate oil concentration without any extraction of the working fluid. In this study a new method and working equation is presented as follows. It is based on the measurement of spedific gravity and temperature : $$C=a+b{\times}t+c{\times}t^2+(d+e{\times}t+f{\times}t^2){\times}SG$$ C is oil concentration, t is temperature($^{\circ}C$), SG is specific gravity of mixture and a~f is coefficients. The oil concentration ranges over 0~12 wt% and the temperature ranges over $20{\sim}50^{\circ}C$. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/POE oil oiquid mixtures.

  • PDF

A Study on the Effect of. Oil Leakage for Soil Contamination, Plants and Groundwater (오일의 누출이 토양오염, 식생 및 지하수에 주는 영향에 관한 연구)

  • 진성기;도덕현;최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • Our experiment investigated the degree of soil contaimination caused by oil leakage. Each soil sample was taken by boring 5, 8m below the test areas, located 5 to 30m from storage tanks at oil stations. According to the results from a series of laboratory tests(both soxhiet extract test and gas chromatograph test), Traces of a light oil were found in all samples except in Dj8, rocky soil and gasoline and petroleum were not detected. We concluded that soil contamination was caused by the corrosion of storage tanks or alternatively by oil overflow caused during the flooding of underground water seeping into the tank during heavy rain fall or the spillage caused by carelessness during lubrication. Old stations without a concrete box enclosing their metal tanks run a greater risk of oil leakage. To research the effect of oil leakage on plant growth and underground water, We examined the results of research conducted overseas. According to these results, when oil leakage occurs, plant growth is repressed and agricultural crops experience low productivity levels. Also, the contamination of underground water can be serious when oil spreads to the aquifer layer. As a result of these problems, to prevent oil leakage and minimize its contaminating effects at oil stations, it is necessary to improve facilities of storage tanks and have the monitoring system of oil leakage.

  • PDF

Study of Antimicrobial Activity of New Zealand’s Tea Tree Essential Oil , Grapefruit Seed Extract and its major Component.

  • Han, Chang-Giu;Lee, Young-Woon;Zhoh, Choon-Koo;Kim, Byung-Hoon
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.17-41
    • /
    • 1999
  • Manuka oil sometime named New Zealand's tea tree oil is soluble in oil and come from nature. The $\alpha$-pinene extracted from Manuka oil and R-limonene which is one of the component of extracted Citrex from Grapefruit were used to estimate the antimicrobial activity and to improve the capability of antiseptic. Disk diffusion and broth dilution methods were used to measure the antimicrobial activity Escherichia coli which is gram-negative bacteria and Staphylococcus aureus which is gram-positive bacteria were used as strain. The antimicrobial activity of Manuka oil and $\alpha$-pinene for Escherichia coli, Staphylococcus aureus is similar when the concentration of Manuka oil and $\alpha$-pinene is 10${mu}ell$. However, Antimicrobial activity of Manuka oil for EscherEchta coli, Staphylococcus aureus is better than that of $\alpha$-pinene when the concentration of Manuka oil and $\alpha$-pinene is low. Antimicrobial activity of Citrex is superior to that of R-limonene. The proper ratio of Maunka oil and Citrex can Improve the antimicrobial activity. The proper ratio obtained from studies was 75% of Maunka oil and 25% Citrex for Escherichia coli, 25% of Maunka oil and 75% Citrex for Staphylococcus aureus.

  • PDF

Mesophase formation behavior in petroleum residues

  • Kumar, Subhash;Srivastava, Manoj
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.171-182
    • /
    • 2015
  • Mesophase pitch is an important starting material for making a wide spectrum of industrial and advanced carbon products. It is produced by pyrolysis of petroleum residues. In this work, mesophase formation behavior in petroleum residues was studied to prepare environmentally-benign mesophase pitches, and the composition of petroleum residues and its influence on the mesophase formation was investigated. Two petroleum residues, i.e., clarified oil s (CLO-1, CLO-2) obtained from fluid catalytic cracking units of different Indian petroleum refineries, were taken as feed stocks. A third petroleum residue, aromatic extract (AE), was produced by extraction of one of the CLO-1 by using N-methyl pyrrolidone solvent. These petroleum residues were thermally treated at 380℃ to examine their mesophase formation behavior. Mesophase pitches produced as a result of thermal treatment were characterized physico-chemically, as well as by instrumental techniques such as Fourier-transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and thermogravimetry/derivative thermogravimetry. Thermal treatment of these petroleum residues led to formation of a liquid-crystalline phase (mesophase). The mesophase formation behavior in the petroleum residues was analyzed by optical microscopy. Mesophase pitch prepared from CLO-2 exhibited the highest mesophase content (53 vol%) as compared to other mesophase pitches prepared from CLO-1 and AE.

Effect of Some Synthetic and Natural Antioxidants on the Oxidative Stability of Skip Jack Oil (참치유의 산화 안전성에 미치는 일부 합성 및 천연 항산화제의 효과)

  • Son, Jong-Yeon;Im, Jae-Ho;Son, Heung-Su
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.2
    • /
    • pp.88-92
    • /
    • 1995
  • The antioxidant activity of synthetic antioxidants, BHA, BHT and TBHQ and natural antioxidants, rosemary extract, sesamol, caffeic acid and pyrogallol In a skip jack oil were studied. A control and substrates containing synthetic(0.02%) and natural antioxidant (0.05%) were stored in an incubator kept at 37$^{\circ}C$ for 8 days. The antioxidant activity of synthetic and natural antioxidants was investigated by comparing peroxide values. The results of this study were as follows All the synthetic antioxidants used for this study exhibited antioxidant activity in skip jack oils. The antioxidant activity of TBHQ was greater than that of BHA and BHT. The rosemary extract did not show antioxidant activity in skip jack oils. The antioxidant activity of sesamol and caffeic acid were greater than those of BHA. Especially Pyrogallol exhibited very strong antioxidant activity, comparable to that of the TBHQ. The antioxidant activity of the sesamol, caffein acid and pyrogallol used skip lack oil, In decreasing order as follows : pyrogallol>caffeic acid> sesamol.

  • PDF

Effects of Rice Bran Extracts on Oxidative Stability of Corn Oil (옥수수유의 산화안정성에 대한 미강 추출물의 효과)

  • Yeon, Jeyeong;Lee, Seon Mi;Yang, Jinwoo;Kwak, Jieun;Kim, Youngwha;Jeong, Heon Sang;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1513-1517
    • /
    • 2016
  • Rice bran contains high amounts of fiber and various phytochemicals, including vitamin E, ${\gamma}$-oryzanol, and phenolic acids. The oxidative stabilities of corn oil added with three rice bran extracts from two rice cultivars (Dasan 1 and Ilpum) were evaluated. The three rice bran extracts were unsaponifiable matter of rice bran (USM), methanolic extract of rice bran oil (MEO), and methanolic extract of defatted rice bran (MEDR). Each sample was stored at $50^{\circ}C$ for 24 days. Oxidation of these samples was determined every 3 days by measuring the peroxide value (POV) and conjugated diene value (CDV). Vitamin E content was analyzed on day 0 and day 24. The results show that the POV and CDV values of samples increased gradually during the storage period. The order of oxidative stability was shown as BHT> MEDR> MEO> USM> control, regardless of cultivars. In the case of vitamin E, ${\alpha}$-T, ${\gamma}$-T, ${\alpha}$-T3, and ${\gamma}$-T3 contents decreased by 89%, 31%, 83%, and 32% after storage for 24 days, respectively. In conclusion, MEDR showed higher oxidative stability and may have potential as a source of natural antioxidants in the oil industry.

Antioxidant properties and oxidative stability of celery seeds ethanol extract using in vitro assays and oil-in-water emulsion (샐러리 종자 에탄올 추출물의 산화방지 활성 및 수중유적형 유화계에서의 산화안정성)

  • Kim, Min-Ah;Han, Chang Hee;Lee, Jae-Cheol;Kim, Mi-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.480-485
    • /
    • 2017
  • This study was conducted to examine the antioxidant activity of 80% ethanol extract of celery seeds and to verify the effectiveness of extracts as a natural antioxidant to improve the stability of oil-in-water emulsions. The radical scavenging activity of 80% ethanol extract of celery seeds was significantly increased at 0.125, 0.25, and 0.5 mg/mL (p<0.05). Additionally, the total phenolic content and FRAP value were equal to $8.2{\pm}2.3mol$ tannic acid equivalent/g extract and $195.0{\pm}12.6mol$ ascorbic acid equivalent/g extract, respectively. The headspace oxygen content was significantly higher in the group treated with 80% ethanol extract of celery seeds than in the control group (p<0.05). The amounts of lipid hydroperoxide and conjugated diene were significantly reduced compared to the control group (p<0.05). The results showed that the extract of celery seeds had excellent antioxidant ability and it could be used as a natural antioxidant owing to the increased oxidative stability of the emulsified product.

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2001
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF