• Title/Summary/Keyword: Oil content

Search Result 2,047, Processing Time 0.037 seconds

Changes in Phytosterol Content in Cobs and Kernels During Physiological Maturity of Corn Ears (옥수수 이삭 등숙 기간 동안 속대와 종실의 Phytosterol 함량 변화)

  • Jun Young Ha;Young Sam Go;Jae Han Son;Mi-Hyang Kim;Kyeong Min Kang;Tae Wook Jung;Beom Young Son;Hwan Hee Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.392-401
    • /
    • 2023
  • Corn (Zea mays L.) is one of the world's most important crops, along with wheat and rice, with a global corn production expected to reach 1,154.5 million tons in 2023. Considering this grain production, The generation of corn cob is expected to reach approximately 207.8 million tons in 2023. However, as an agricultural by-product, corn cobs are often considered waste and remain underutilized. Phytosterols, which are abundant in vegetable oils such as corn oil, provide a number of health benefits, including liver health, cholesterol reduction, and protection against chronic diseases such as diabetes. In this study, we investigated the potential of Kwangpyeongok ears, which are commonly used as grain and silage corn in Korea. We also examined the variation in phytosterol content with the maturity of corn ears to identify the optimal time for utilization. At the beginning of physiological maturity, corn cobs had 113.3 mg/100g DW of total phytosterols, which was highest phytosterol abundance during the growth stage. Corn kernels also had the highest phytosterol content at the beginning of physiological maturity. While previous studies on corn bioactive compounds have mainly focused on the kernels, the results of this study highlight that cobs are an excellent source of these compounds. Furthermore, phytosterol levels were influenced by genetic factors and developmental stages, suggesting the to increase the use of cobs as a source of bioactive compounds.

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Preparation of Vitamin E Acetate Nano-emulsion and In Vitro Research Regarding Vitamin E Acetate Transdermal Delivery System which Use Franz Diffusion Cell (Vitamin E Acetate를 함유한 Nano-emulsion 제조와 Franz Diffusion Cell을 이용한 Vitamin E Acetate의 경표피 흡수에 관한 In Vitro 연구)

  • Park, Soo-Nam;Kim, Jai-Hyun;Yang, Hee-Jung;Won, Bo-Ryoung;Ahn, You-Jin;Kang, Myung-Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.91-101
    • /
    • 2009
  • in the cosmetics and medical supply field as a antioxidant material. The stable nano particle emulsion of skin toner type containing VEA was prepared. To evaluate the skin permeation, experiments on VEA permeation to the skin of the ICR outbred albino mice (12 weeks, about 50 g, female) and on differences of solubility as a function of receptor formulations was performed. The analysis of nano-emulsions containing VEA 0.07 % showed that the higher ethanol contents the larger emulsions were formed, while the higher surfactant contents the size became smaller.In this study, vitamin E acetate (VEA, tocopheryl acetate), a lipid-soluble vitamin which is widely used A certain contents of ethanol in receptor phase increased VEA solubility on the nano-emulsion. When the ethanol contents were 10.0 % and 20.0 %, the VEA solubility was higher than 5.0 % and 40.0 %, respectively. The type of surfactant in receptor solution influenced to VEA solubility. The comparison between three kind surfactants whose chemical structures and HLB values are different, showed that solubility of VEA was increased as order of sorbitan sesquioleate (Arlacel 83; HLB 3.7) > POE (10) hydrogenated castor oil (HCO-10; HLB 6.5) > sorbitan monostearate (Arlacel 60; HLB 4.7). VEA solubility was also shown to be different according to the type of antioxidant. In early time, the solubility of the sample including ascorbic acid was similar to those of other samples including other types of antioxidants. However, the solubility of the sample including ascorbic acid was 2 times higher than others after 24 h. Franz diffusion cell experiment using mouse skin was performed with four nano-emulsion samples which have different VEA contents. The emulsion of 10 wt% ethanol was shown to be the most permeable at the amount of 128.8 ${\mu}g/cm^2$. When the result of 10 % ethanol content was compared with initial input of 220.057 ${\mu}g/cm^2$, the permeated amount was 58.53 % and the permeated amount at 10 % ethanol was higher 45.0 % and 15.0 % than the other results which ethanol contents were 1.0 and 20.0 wt%, respectively. Emulsion particle size used 0.5 % surfactant (HCO-60) was 26.0 nm that is one twentieth time smaller than the size of 0.007 % surfactant (HCO-60) at the same ethanol content. Transepidermal permeation of VEA was 54.848 ${\mu}g/cm^2$ which is smaller than that of particlesize 590.7 nm. Skin permeation of nano-emulsion containing VEA and difference of VEA solubility as a function of receptor phase formulation were determined from the results. Using these results, optimal conditions of transepidermal permeation with VEA were considered to be set up.

Quality Characteristics of Takju, Yakju, Spirit made by Pulse Crop Nuruks (두류 누룩으로 제조한 탁주, 약주, 증류주의 품질 특성)

  • Jeong, Jae-Hong;Chai, He-Suk;Lee, Yun-Hi;Lee, Kun-Soon;Kim, Jae-Min;Lee, Jeong-Hoon
    • Culinary science and hospitality research
    • /
    • v.21 no.3
    • /
    • pp.232-247
    • /
    • 2015
  • This study was carried out to evaluate the quality of characteristics of the Takju, Yakju, spirit made by various pulse crop Nuruks which were made by Whyangonkuk(whole wheat, mung beans), Naebubijeonkuk mung beans, wheat flour, millet), Daedukuk(whole wheat, soybean). pH, Brix, total acidity, cell numbers of yeast and alcohol content of brews were analysed and flavors, organic acids, sensory evaluation of Takju, Yakju, and spirit were employed to analyze for current study. Results showed that pH value of Whyangonkuk brews during fermentation decreased the lowest, and Brix value also decreased. Total acidity of Whyangonkuk at the initial and final stage of fermentation revealed the most. Alcohol contents of Naebubijeonkuk brew presented the highest at the initial stage of fermentation, but there were no significant differences among Whyangonkuk, Naebubijeonkuk and Daedukuk at the final stage of fermentation. Cell numbers of yeast were found the most in Daedukuk at the first stage of fermentation, and cell numbers started to decrease after 2 days, but there were no significant differences at the final stage(p<0.05). In terms of analysis of flavor components, acetone and n-amyl alcohol were not detected in Takju, Yakju, and spirit. n-butanol was detected the most value followed by i-amyl alcohol. Fusel oil were detected the highest level at spirit, but no differences among Takju, Yakju and spirit. In analysis of organic acids, fumaric acid and formic acid were detected in Takju and Yakju. while 7 kind of organic acids were detected. Lactic acid showed the highest level in organic acid analysis. Takju and Yakju made by Whyangonkuk showed the highest score, and Daedukuk showed the opposite result but there were no differences in spirit made by Whyangonkuk, Naebubijeonkuk, and Daedukuk. As a result of this study, Whyangonkuk presented the most desirable Nuruk.

Analysis of Physicochemical Characterization and Volatiles in Pure or Refined Olive Oils (국내 유통되는 퓨어 및 정제 올리브유의 이화학적 특성 및 향기 분석)

  • Nam, Ha-Young;Lee, Ju-Woon;Hong, Jang-Hwan;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1409-1416
    • /
    • 2007
  • Seven selected commercial pure or refined olive oils were obtained from the market, and their physicochemical properties and volatile characterizations were investigated. Fatty acid profiles of the analyzed olive oils showed oleic $(61.2{\sim}74.7mole%)$, palmitic $(10.2{\sim}16.8mole%)$, linoleic $(9.4{\sim}18.0mole%)$, stearic $(1.9{\sim}3.0mole%)$, palmitoleic $(0.7{\sim}2.4mole%)$ and linolenic acid $(0.5{\sim}0.9mole%)$. According to Hunter#s color measurement, pure or refined olive oils showed $L^*$ value of $92.2{\sim}99.0$, $a^*$ value of $-22.2{\sim}-3.2$, and $b^*$ value of $18.5{\sim}55.0$. Their total phenol contents ranged from 1.9 to $13.3mg/100g$ while ${\alpha}-tocopherol$ content showed $7.91{\sim}13.88mg/100g$. Oxidation stability of the pure or refined olive oils were observed by Rancimat. The induction period ranged from 17.37 to 34.72 hr while their POV were $6.83{\sim}20.31meq/kg$ oil. Electronic nose and gas chromatograph-mass spectrometry with head-space solid phase microextraction were applied to identify and discriminate the volatile compounds and flavors in pure or refined olive oils, respectively.

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.

Processing and Property of Olive Flounder Paralichthys olivaceus Steak (넙치(Paralichthys olivaceus)스테이크제품의 제조 및 품질특성)

  • Yoon, Moon-Joo;Kwon, Soon-Jae;Lee, Jae-Dong;Park, Si-Young;Kong, Cheong-Sik;Joo, Jong-Chan;Kim, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.98-107
    • /
    • 2015
  • Olive flounder contains rich amount of lysine which is required for children's growth. Moreover, it is good foodstuffs for elderly, convalescent and diabetics because of low lipid content and high digestibility. This study was investigated for the purpose of obtaining basic data which can be applied to the processing of olive flounder steak. Olive flounder 100 g were chopped, mixed with vegetable (onion 20%, celery 10%, carrot 15%, garlic 1% of chopped olive flounder meat) and ingredient (bread crumbs 20 g, onion 15 g, celery 10 g, egg 1 ea, tarragon 1/2 t, blanc sauce 20 g, fresh cream 20 mL, salt and pepper pinch). Mixed dough was molded into steak shape ($12{\times}7cm$) and was processed by two types of products, Steak-1 {Roasting for 2 minutes in a frying pan wrapped with olive oil and then vacuum packaging in polyethylene film ($20{\times}30{\times}0.05mm$), and then storage at $-20^{\circ}C$ for 7 days, next thawed and warmed by microwave for 2 minutes} and Steak-2 {vacuum-packaging in polyethylene film ($20{\times}30{\times}0.05mm$), and then storage at $-20^{\circ}C$ for 7 days, after thawed, roasted during 2 minutes in a frying pan wrapped with olive oil}. The factors such as pH, TBA value, amino-N, free amino acid, chemical composition, color value (L, a, b), texture profile, sensory evaluation and viable bacterial count of the olive flounder steak (Steak-1, Steak-2) were measured. From the result of sensory evaluation, Steak-2 showed a bit more high scores than Steak-1 but it was difficult to distinguish significant difference (color, odor, taste, texture and acceptance) between Steak-1 and Steak-2 products.

Study on the Physical Properties of Artificial Soil for Tillage Experiments (경운실험(耕耘實驗)을 위(爲)한 인공토양(人工土壤)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kee-Dae;Hur, Yun-Kun;Kim, Man-Soo;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1978
  • For improvement and new design of tillage equipments, indoor test is very useful and more desirable than outdoor because the experiment of outdoor is very difficult and its cost is expensive. This study was carried out to determine the physical properties of artificial soil suitable for the indoor test with the soil bin manufactured at the workshop of the Dept. of Agricultural Machinery Engineering. The artificial soil being studied was made with very similarity to the natural soil of the experimental plots of Chungnam National University, and it consist of 39.35 percent, by weight of bentonite and 48.10 percent of sand with 12.55 percent of SAE 10W oil. The results are summarized as follows: 1. Bulk density increased with increasing number of rolling, and its relationship could be expressed. $y=1.073200+0.070780x-0.002263x^2$ where, y=bulk density ($g/cm^3$), x=number of rolling. These results could be explained that the effect of rolling velocity on the bulk density was not singnificant in the range of 4.5~10.4 em/sec. 2. The absolute soil hardness depended directly upon number of rolling, and their relationship could be expressed by the equation. $y=37.74(0.64 +0.17x-0.0054x^2)/(3.36-0.17x-0.0054x^2)^3$. where, y=absolute soil hardness($kg/cm^3$), x=number of rolling. 3. Relationship between the bulk density and absolute soil hardness could be expressed by the equation; $y=37.74(2.46x-2.02)/(6.02-2.46x)^3$. where, y=absolute soil hardness, x=bulk density. 4. The cohesion and the angle of internal friction of artificial soil were increased with increasing its bulk density. According to the cohesion and angle of internal friction, at the range of 1.60~1.75 ($g/cm^3$) of bulk density, this artificial soil was similar with sandy loam of 29.5% moisture content of natural soil. 5. Sliding-fricfion coefficient of steel plate on the artificial soil was 0.3~0.4 and rubber plate on it is 0.64~0.72. Those values were very similar with those of natural soil being studies by many others.

  • PDF