• Title/Summary/Keyword: Oil adsorption

Search Result 161, Processing Time 0.035 seconds

Immobilization of Burkholderia cepacia Lipase on Weak Base Styrene Resin Using Polyethyleneimine with Cross-linking (PEI(Polyethyleneimine)를 이용하여 음이온계 레진에 고정화된 Lipase AH 제조 및 효소적 Interesterification을 통한 반응 특성 연구)

  • Lee, Chi Woo;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1025-1035
    • /
    • 2014
  • This study assessed the effect of immobilized lipase on weak base styrene resin using polyethyleneimine (PEI) with cross-linking. Two procedures were used in this study. The first one, "mono-layer" lipase immobilization, involves washing PEI after adsorption. The second procedure, "multi-layer" lipase immobilization, has no washing before the cross-linking step. Treverlite XS-100200 (weak base styrene resin) was immersed with PEI solution (2.2 mg/mL). Lipase AH (from Burkholderia cepacia) was adsorbed onto the support coated with PEI before cross-linking with glutaraldehyde. Structured lipid was synthesized by immobilized lipase-catalyzed interesterification using canola oil, palmitic ethyl ester (PEE), and stearic ethyl ester (StEE). Total fatty acid contents of triacylglycerol (TAG) in structured lipids were analyzed to investigate activity, properties, and reusability of immobilized lipases. Activities of immobilized lipases on the multi-layer and mono-layer increased at a high concentration (8 mg/mL) of lipase solution used for immobilization. The results show that immobilized lipase with the mono-layer method at pH 8.0 on resin had the highest total saturated fatty acid content (26.17 area%). Activity of immobilized lipase with the multi-layer method at pH 7.5 on support was lower than that of the mono-layer, but total saturated fatty acid content was 16.79 area% higher than that of lipase AH (15.01 area%).

A Study of Alkali Metal Vapor Adsorption Behavior by Using Pressurized Reactor (가압반응기를 이용한 알칼리금속증기 흡착특성에 관한 연구)

  • 전수한;최병철;김형택
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Alkali metal compounds existed in original coal or sorbents are exhausted as vapor or small particle at the outlet of combustor when operating PFBC power plant. These compounds can be removed with dust removal equipment, but total generation efficiency will be decreased because of lower operating temperature of dust removal equipment. Alkali metal contained in vapor phase is initially deposited onto turbine blade results in serious corrosion. The concentration of alkali vapor in the PFBC flue gas is 20∼40 ppm which is dependent on mineral characteristics and composition as well as operating condition of PFBC. However, the allowance limit of alkali metal vapor is assigned as less than 50 ppb for gas turbine when coal or oil is used as fuel. Therefore, alkali metal vapor in PFBC or IGCC process should be removed by solid sorbents to prevent corrosion of turbine blade and improve plant efficiency. In the present investigation, powder of Bauxite, Kaolinite and Limestone is used in the preparation of cylinder-type pellet which is inserted into the pressurized alkali removal reactor for the alkali absorption experiment. Experimental results showed that the alkali removal efficiency in the order of Bauxite, Kaolinite and Limestone. Alkali vapor removal efficiency is related with reaction temperature, porosity of pellet and alkali vapor concentration of flue gas.

Determination of Cyhalofop-butyl and its Metabolite in Water and Soil by Liquid Chromatography (LC를 이용한 물과 토양 중 Cyhalofop-butyl과 대사물질의 분석)

  • Hem, Lina;Choi, Jeong-Heui;Liu, Xue;Khay, Sathya;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • In this study, a simple, effective, and sensitive method has been developed for the quantitative residue analysis of cyhalofop-butyl and its metabolite cyhalofop acid in water and soil when kept under laboratory conditions. The content of cyholofop-butyl and cyhalofop acid in water and soil was analyzed by first purifying the compounds through liquid-liquid extraction and partitioning followed by Silica gel (adsorption) chromatography. Upon the completion of the purification step the residual levels were monitored through high-performance liquid chromatography (HPLC) using a UV absorbance detector. The recoveries of cyhalofop-butyl from three replicates spiked at two different concentrations ranged from 82.5 to 100.0% and from 66.7 to 97.9% in water and soil, respectively. The limit of detection and minimum detection level of cyhalofop-butyl in water and soil was 0.02 ppm and 10 ng, respectively. The recoveries of cyhalofop acid ranged from 80.7 to 104.8% in water and from 76.9 to 98.1 % in soil. The limit of detection of cyhalofop acid was 0.005 ppm in water and 0.01 ppm in soil, while the minimum detection level was 2 ng both in water and soil. The half-live of cyhalofop-butyl was 4.14 and 6.6 days in water and soil, respectively. The method was successfully applied to evaluate cyhalofop-butyl residues in water and soil applied aj. 30% emulsion, oil in water (EW) product.

Functional Properties of Sunmul (Soybean Curd Whey) Concentrate by Ultrafiltration (한외여과에 의한 순물 농축액의 기능적 특성)

  • Kim, You-Pung;Eom, Sang-Mi;Chang, Eun-Jung;Kim, Woo-Jung;Oh, Hoon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.488-494
    • /
    • 2006
  • This study was carried out in order to investigate the feasibility of utilizing concentrated sunmul (soybean curd whey), which is a waste by-product of soybean curd processing, as a functional food ingredient. Sunmul Powder was concentrated by ultrafiltration and spray dried with or without dextrin. Oil adsorption capacity of UF retentate powder was similar to that of ISP (Isolated Soy Protein) and higher than that of sunmul powder, whereas water holding capacity of UF retentate powder was lower than that of ISP. Protein solubility of all types of UF retentate powder was significantly higher than that of ISP at pH 2.0-10.0 with the lowest protein solubility seen at pH 4.0 and solubility increasing as the conditions became more acidic or alkaline. Emulsifying activity indexes of UF retentate powder at pH 2.0-10.0 were not influenced by pH. Emulsion stability of 4% sunmul solution was lowest at pH 4.0, but that of UF retentate powder was higher at acidic pH values and decreased with increasing pH. Foaming capacities of sunmul and UF retentate powder were high at pH 4.0-6.0, but the foam of UF retentate powder disappeared within 20 minutes in all conditions of pH.

Interfacial Properties of Octenyl Succinyl Barley ${\beta}$-Glucan in Emulsion System (유화액 시스템에서 옥테닐 호박산 베타글루칸의 계면 특성)

  • Gil, Na-Young;Kim, San-Seong;Lee, Eui-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.642-652
    • /
    • 2014
  • The synthesis of octenyl succinyl ${\beta}$-gucan (OSA-${\beta}$-glucan) was carried out and its interfacial properties at the oil-water interface and in emulsion systems were investigated. An aqueous ethanol system as a reaction media was used to facilitate the synthesis process; 10% (w/w) ethanol found to be the best as it showed a maximum degree of substitution (DS: 0.0132). FT-IR showed a characteristic absorption spectrum at $1736cm^{-1}$, indicating the esterification of octenyl succinyl groups to ${\beta}$-glucan backbone. As for interfacial tension measurements, it was decreased with increasing concentration of OSA-${\beta}$-glucan in the aqueous phase and when NaCl was added to aqueous OSA-${\beta}$-glucan solution in the range of 0.01 M to 0.1 M and also when pH was raised (pH 3 ~ pH 9). In systems of emulsion stabilized with OSA-${\beta}$-glucan, fat globule size found to decrease with increasing concentration of OSA-${\beta}$-glucan, showing a critical value of about $0.32{\mu}m$ at 0.5 wt%. When the OSA-${\beta}$-glucan emulsions were stored, it was found that fat globule size was increased with storage time and particularly pronounced increase was observed in emulsion with 1% OSA-${\beta}$-glucan, possibly due to depletion flocculation. Results of creaming stability evaluated by light scattering technique showed that it was more stable in emulsions containing smaller fat globule size. Surface load of OSA-${\beta}$-glucan in emulsions increased with increasing concentration of OSA-${\beta}$-glucan, suggesting a multilayer adsorption.

Catalytic Oxidation of Volatile Organic Compounds Over Spent Three-Way Catalysts (배기가스 정화용 폐 자동차 촉매를 이용한 휘발성 유기화합물의 제거)

  • Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2008
  • The optimum regeneration conditions for the regeneration of three way spent catalysts (TWCs), which were taken from automobiles with different driving conditions, were investigated to evaluate the suitability as alternative catalysts for removing VOCs. The spent catalysts were washed with five different acids ($HNO_3$, $H_2SO_4$, $C_2H_2O_4$, $C_6H_8O_7$, and $H_3PO_4$) to remove contaminants and examine the optimum conditions for recovering the catalytic activity. The physicochemical properties of spent and its regenerated TWCs were evaluated by using nitrogen adsorption-desorption isotherms, XRD, and ICP. The relative atomic ratios of contaminants and platinum group metals (PGMs) of the spent TWCs were greatly dependent on the placed positions. The main contaminants formed were lubricant oil additives and metallic components. Also, the regeneration treatment increased the PGMs ratio, BET surface area, and average pore diameter of TWCs. The catalytic activity results indicated that the spent TWCs have the possibility for removing VOCs. Moreover, the employed acid treatments greatly enhanced the catalytic activity of the spent TWCs. Especially, nitric and oxalic acids provided the most improvement in the catalytic behavior. The catalytic activities of the regenerated TWCs were significantly influenced by the containing platinum ratios rather than the removal ratios of contaminants and the changes in the structural properties offered by the acid treatments.

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.

Characteristics of Volatile Compound Adsorption from Alcoholic Model Solution onto Various Activated Carbons (알코올모델용액을 이용한 여러 종류 활성탄의 휘발성화합물 흡착특성)

  • Park, Seung-Kook;Lee, Myung-Soo;Kim, Byung-Ho;Kim, Dae-Ok
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Ten commercial activated carbons (ACs) prepared from four different sources (bamboo, wood, peat, and coal) were evaluated for their adsorptive efficiency of six volatile compounds (isoamyl alcohol, hexanal, furfural, ethyl lactate, ethyl octanoate, 2-phenyl ethanol) which were dissolved in a 30% alcoholic model solution. These six volatile compounds are frequently found in alcoholic beverages and possibly contribute to physiological hangover due to their high concentrations. They are also generally regarded as off-flavor compounds at certain levels in alcoholic beverages such as whisky and vodka. Two hundred mL of 30% alcoholic solutions containing these six volatile compounds were treated with 0.2 g of ACs while stirring for 16 hr; the treated solutions were then measured for their adsorptive efficiencies (or removal efficiencies) by gas chromatographic analysis using two different sampling methods (direct liquid injection and headspace-solid phase microextraction). The adsorptive efficiencies of the ACs varied depending on the identity of the volatile compounds and the source material used for making the ACs. Ethyl octanoate, 2-phenyl ethanol, and hexanal were removed at high efficiencies (34-100%), whereas isoamyl alcohol, ethyl lactate, and furfural were removed at low efficiencies (5-13%). AC prepared from bamboo showed a high removal efficiency for isoamyl alcohol, aldehydes (hexanal and furfural), and 2-phenyl ethanol; these major fusel oils have been implicated as congeners responsible for alcohol hangover.

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Functional Properties of Soybean Curd Whey Concentrate by Nanofiltration and Effects on Rheological Properties of Wheat Flour Dough (나노여과에 의한 순물 농축액의 기능적 특성 및 밀가루 반죽의 리올로지 성질에 미치는 영향)

  • Eom, Sang-Mi;Kim, You-Pung;Chang, Eun-Jung;Kim, Woo-Jung;Oh, Hoon-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2006
  • This study was designed to investigate the feasibility of utilizing concentrates of sunmul(soybean curd whey), the waste by-product of soybean curd processing, as functional food ingredients. Sunmul was concentrated by nanofiltration fo11owing ultrafiltration and then freeze-dried. The oil adsorption capacity of the nanofiltraion(NF) powder(97.33g/100g) was similar to that of sunmul powder(94.17g/100g), but was lower than that of ISP(isolated soy protein). However, the water holding capacity of NF powder could not be determined because the NF powder completely dissolved in water. The protein solubilities of sunmul powder and ISP in distilled H$_{2}$O, 0.1M and 0.5M NaCl were lowest at pH 4.0 and increased at more acidic or alkaline conditions. However, the protein solubility of NF powder was at its minimum at pH 6.0 and increased at more acidic or alkaline conditions. Emulsifying activity indexes of NF powder in 4% and 6% solution were minimal at pH 4.0 and 6.0, respectively, which were 3 to 8 times lower than that of sunmul powder. The emulsion stability of 4% sunmul solution was lowest at pH 4.0, but that of NF powder was highest at pH 5.0 and decreased at more acidic or alkaline conditions at all concentrations of solution. The total free amino acid contents of protein in sunmul, and NF power were 99.07 and 2,110.10mg%, respectively, and NF powder exhibited especially high threonine content. Rapid viscosity analysis of dough with 1 to 5% added NF powder demonstrated that all of the peak and final viscosities decreased with increasing NF powder concentration compared to the control.