• Title/Summary/Keyword: Oil Duct

Search Result 39, Processing Time 0.023 seconds

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier (산적화물선의 에너지 저감 장치들의 성능 비교에 관한 연구)

  • Kim, Eok-Kyu;Lee, Kang-Ki;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The environmental regulations for CO2 emissions from the ship have been established recently, and fuel oil price has been increased continuously. In order to overcome these circumstances, Energy Saving Devices (ESDs) have been developed continuously to reduce the fuel oil consumption and improve the propulsive efficiency. This paper describes the trial performance of PBCF (Propeller Boss Cap Fins), SCHNEEKLUTH duct, Asymmetric rudder bulb and Mewis duct applied to handy-size bulk carriers. As a result, SCHNEEKLUTH duct is more effective than other energy saving devices at the reducing the fuel oil consumption and the improvement of the propulsive efficiency. In addition, it is confirmed that SCHNEEKLUTH duct is really effective in the vibration of the deck house. And the fuel oil consumption can also be reduced through main engine de-rating.

Numerical Analysis of the Development of an Air Conditioning Duct for Marine and Oil Drilling Ships (해양 시추선용 공조덕트 개발에 대한 수치해석)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2017
  • This study is about the distributions of flow in an air conditioning duct used for marine and oil drilling ships. Three-dimensional steady state turbulence was assumed as a governing equation for describing the flow in the air conditioning duct in this study. We compared the flow field with the pressure distribution according to the inlet velocity for two types of air conditioning duct, and stress and safe factors were simulated using ANSYS W/B. The result of fluid analysis showed an increased pressure drop in the duct according to the inlet velocity. Furthermore, secondary flow and complicated flow characteristics occurred at the bellows zone.

3-D Analysis of Temperature Distribution in Transformers (변압기의 3차원 온도분포 해석)

  • 오연호;송기동;선종호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.434-441
    • /
    • 2003
  • This paper deals with the temperature characteristics according to the cooling medium and the duct size in model transformers. For the analysis and the temperature-rise tests, two 400kVA model transformers have been manufactured. One has been filled with the alpha oil as the cooling medium and constructed the duct sizes of $3\textrm{mm}$ and $5\textrm{mm}$ in the low-voltage and high-voltage windings respectively. The other has been filled the beta oil and the duct sizes were $4\textrm{mm}$ and $6\textrm{mm}$. The temperature-rise tests have been performed by the back-to-back method and the load factor has been controlled the range of 90%∼130%. The temperature values have been measured by the thermocouple and from the sixteen points in each transformer. A commercial CFD program "FLUENT" has been used for the analysis of temperature distribution. The geometry of transformer has been modeled to 3-dimensional by using the hybrid calculation mesh including the radiator. And also, the natural convection velocity has been measured at the oil top position, and compared with the calculated results.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

Experiment for Duct Development to Cool Components in Vehicle Engine Room (차량 엔진룸내 부품 냉각용 덕트 개발을 위한 실험)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.98-102
    • /
    • 2018
  • In order to improve the durability of components in the vehicle engine room, an experiment to improve the air cooling effect of components by installing a cooling duct using intake air aiming at four components, such as generator, battery, ECU and power steel oil, Respectively, experimental results show that the overall component temperature has been reduced, and the reduced temperature difference is in the order of generator, ECU, power steel oil and battery. In order to improve the temperature difference due to these components, it is necessary to optimize the design through the flow analysis in the duct in the future.

Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 열유동에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study is about distributions of heat transfer in air conditioning duct used for marine and oil drilling ship. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. So, it was checked that the amount of heat transfer generated at duct increased as the convective heat transfer coefficient increased. In case the convective heat transfer coefficient was low, the temperature of duct showed the relatively high temperature distribution due to the temperature influence of internal fluid as the heat transfer between the outside and inside of the duct. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, it was found out that the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

Remote Monitoring of Abrupt Overflowing in Common Utility Duct Using Reflective Side-Polished Optical Fiber Submersion Sensor

  • Lee, Cherl-Hee;Kim, Cheol;Kang, Shin-Won;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.166-169
    • /
    • 2008
  • The submersion monitoring system based on a reflective side-polished optical fiber submersion sensor with an optical fiber mirror was shown to be an effective alarm system with remote monitoringwhen the drainage capacity of a common utility duct is exceeded due to heavy rainfall. The proposed sensor was connected to an existing installed optical fiber network at a height of 250mm in a common utility duct, and then tested under sample materials(distilled water, river water, sea water, foul water, muddy water, petroleum, edible oil) at a distance of 1km from the sensor for remote sensing. In experiments, the proposed real-time sensor system reduced maintenance cost and improved monitoring efficiency by using a reflection-type side-polished optical fiber submersion sensor efficient for remote monitoring of a common utility duct.

Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 열유동에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2018
  • This study is about the distribution of heat transfer in air conditioning ducts used for marine vessels and oil drilling platforms. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. The experiment was to determine if the amount of heat transfer generated at the duct exit increased as the convective heat transfer coefficient increased. When the convective heat transfer coefficient was low, the temperature of the duct showed a relatively high temperature difference between the outside and inside of the duct due to the temperature influence of the internal fluid. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

Pre-Swirl Duct of Fuel Oil Saving Device Design and Analysis for Ship (선박용 연료절감장치 Pre-Swirl Duct의 설계 및 평가방법 연구)

  • Shin, Hyun-Joon;Lee, Kang-Hoon;Han, Myung-Ryun;Lee, Chang-Yul;Shin, Sung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • Recently, with oil price jumping and environmental issues, Green ship is paid deep attention to by ship owner, operator, builder, class and government. Fuel efficiency and reduction of $CO_2$ emissions are expected to have a strong influence on the design and operation of merchant ships. Many ship owners and operators are seeking the more economic method by the best operating route and the application of reliable and effective energy saving devices. With the Energy Efficiency Design Index (EEDI) in 2013 attention will more than ever be focused at achieving maximum fuel economy in the hydrodynamic design of hull forms, their appendages and propellers. IMO requirements for $CO_2$ emission for ships will now be implemented for vessels ordered from 1st January 2013. So far, a lot of new idea and patents have been proposed, tested, claimed and applied for various kinds of ship type. This paper shows numerical and experimental work related to a study on a energy saving devices particularly for fuller ship such as merchant vessel of Tanker and Bulker. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction.

A Study on the Flow and Structural Analysis in an Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 유동 및 구조해석에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.88-93
    • /
    • 2019
  • This study concerns the distributions of flow in an air conditioning duct used for a marine and oil drilling ship. From the results of carrying out flow analysis and structural analysis of a ventilation duct applied to a marine structure, the following conclusion could be gained. The pressure tended to increase as the flow velocity at the inlet increased and the pressure at the inlet increased. It was recognized that the pressure decreased due to the influence of a corrugated tube when it entered and exited from the duct. As a result of structural analysis, a higher train was generated at the corrugated tube compared with the duct. In addition, in the case of the internal pressure of 0.7MPa, which was the designed load, it was found that there was almost no influence as it was within 0.1mm.