• Title/Summary/Keyword: Ohmic Contact

Search Result 293, Processing Time 0.028 seconds

Optimization of Drive-in Process with Various Times and Temperatures in Crystalline Silicon Solar Cell Fabrication (결정질 실리콘 태양전지 도핑 확산 공정에서 시간과 온도 변화에 의한 Drive-in 공정 연구)

  • Lee, Hee-Jun;Choi, Sung-Jin;Myoung, Jae-Min;Song, Hee-Eun;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.51-55
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with 156 ${\times}$ 156 mm2 area was studied. To optimize the drive-in condition in the doping process, the other conditions except drive-in temperature and time were fixed. After etching 7 ${\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80 nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in $400-425-450-550-850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $828^{\circ}C$ to $860^{\circ}C$ and time was from 3 min to 40 min. The sheet resistance of wafer was fixed to avoid its effect on solar cell. The solar cell fabricated with various conditions showed the similar conversion efficiency of 17.4%. This experimental result showed the drive-in temperatures and times little influence on solar cell characteristics.

  • PDF

Recrystallized poly-Si TFTs on metal substrate (금속기판에서 재결정화된 규소 박막 트랜지스터)

  • 이준신
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF

Optical and Electrical Properties of InAs Sub-Monolayer Quantum Dot Solar Cell

  • Han, Im-Sik;Park, Dong-U;No, Sam-Gyu;Kim, Jong-Su;Kim, Jin-Su;Kim, Jun-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.196.2-196.2
    • /
    • 2013
  • 본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.

  • PDF

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.

Electron Beam Evaporated ITO Transparent Electrode for Highly Efficiency GaN-based Light Emitting Diode (고효율 질화갈륨계 발광 다이오드용 전자선 증착 ITO 투명 전도 전극 연구)

  • Seo, Jae Won;Oh, Hwa Sub;Kang, Ki Man;Moon, Seong Min;Kwak, Joon Seop;Lee, Kuk Hwe;Lee, Woo Hyun;Park, Young Ho;Park, Hae Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.683-690
    • /
    • 2008
  • In order to develop transparent electrodes for high efficiency GaN-based light emitting diodes (LEDs), the electrical and optical properties of the electron beam evaporated ITO contacts have been investigated as a function of the deposition temperature and flow rate of oxygen during the deposition. As the deposition temperature increases from $140^{\circ}C$ to $220^{\circ}C$, the resistivity of the ITO films decreases slightly from $4.0{\times}10^{-4}{\Omega}cm$ to $3.3{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films significantly increases from 67% to 88% at the wavelength of 470 nm. When the flow rate of oxygen during the deposition increases from 2 sccm to 4 sccm, the resistivity of the ITO films increases from $3.6{\times}10^{-4}{\Omega}cm$ to $7.4{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films increases from 86% to 99% at 470 nm. Blue LEDs fabricated with the electron beam evaporated ITO electrode show that the ITO films deposited at $200^{\circ}C$ and 3 sccm of the oxygen flow rate give a low forward-bias voltage of 3.55 V at injection current of 20 mA with a highest output power.

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

Applications of Nanomanipulator in Nanowires (나노메니퓰레이터를 이용한 나노선의 특성평가)

  • Yoon, Sang-Won;Seo, Jong-Hyun;Ahn, Jae-Pyoung;Seong, Tae-Yeon;Lee, Kon-Bae
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.138-145
    • /
    • 2009
  • The combination of focused ion beam (FIB) and 4 point probe nanomanipulator could make various nano manufacturing and electrical measurements possible. In this study, we manufactured individual ZnO nanowire devices and measured those electrical properties. In addition, tensile experiments of metallic Au and Pd nanowires was performed by the same directional alignment of two nanomanipulators and a nanowire. It was confirmed from I-V curves that Ohmic contact is formed between electrodes and nanomanipulators, which is able to directly measure the electrical properties of a nanowire itself. In the mechanical tensile test, Au and Pd nanowires showed a totally different fracture behavior except the realignment from <110> to <002>. The deformation until the fracture was governed by twin for Au and by slip for Pd nanowires, respectively. The crystallographic relationship and fracture mechanism was discussed by TEM observations.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Ridge Formation by Dry-Etching of Pd and AlGaN/GaN Superlattice for the Fabrication of GaN Blue Laser Diodes

  • Kim, Jae-Gwan;Lee, Dong-Min;Park, Min-Ju;Hwang, Seong-Ju;Lee, Seong-Nam;Gwak, Jun-Seop;Lee, Ji-Myeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.391-392
    • /
    • 2012
  • In these days, the desire for the precise and tiny displays in mobile application has been increased strongly. Currently, laser displays ranging from large-size laser TV to mobile projectors, are commercially available or due to appear on the market [1]. In order to achieve a mobile projectors, the semiconductor laser diodes should be used as a laser source due to their size and weight. In this presentation, the continuous etch characteristics of Pd and AlGaN/GaN superlattice for the fabrication of blue laser diodes were investigated by using inductively coupled $CHF_3$ and $Cl_2$ -based plasma. The GaN laser diode samples were grown on the sapphire (0001) substrate using a metal organic chemical vapor deposition system. A Si-doped GaN layer was grown on the substrate, followed by growth of LD structures, including the active layers of InGaN/GaN quantum well and barriers layer, as shown in other literature [2], and the palladium was used as a p-type ohmic contact metal. The etch rate of AlGaN/GaN superlattice (2.5/2.5 nm for 100 periods) and n-GaN by using $Cl_2$ (90%)/Ar (10%) and $Cl_2$ (50%)/$CHF_3$ (50%) plasma chemistry, respectively. While when the $Cl_2$/Ar plasma were used, the etch rate of AlGaN/GaN superlattice shows a similar etch rate as that of n-GaN, the $Cl_2/CHF_3$ plasma shows decreased etch rate, compared with that of $Cl_2$/Ar plasma, especially for AlGaN/GaN superlattice. Furthermore, it was also found that the Pd which is deposited on top of the superlattice couldn't be etched with $Cl_2$/Ar plasma. It was indicating that the etching step should be separated into 2 steps for the Pd etching and the superlattice etching, respectively. The etched surface of stacked Pd/superlattice as a result of 2-step etching process including Pd etching ($Cl_2/CHF_3$) and SLs ($Cl_2$/Ar) etching, respectively. EDX results shows that the etched surface is a GaN waveguide free from the Al, indicating the SLs were fully removed by etching. Furthermore, the optical and electrical properties will be also investigated in this presentation. In summary, Pd/AlGaN/GaN SLs were successfully etched exploiting noble 2-step etching processes.

  • PDF