• 제목/요약/키워드: Offshore-foundation

검색결과 191건 처리시간 0.027초

유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석 (Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction)

  • 이진호;이상봉;김재관
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-12
    • /
    • 2012
  • 이 논문에서는 유체-구조물-지반의 상호작용을 고려한 해상풍력발전기의 지진응답해석법을 제시하였다. 풍력발전기는 tower와 그 정점에 집중된 질량으로 모델링 되었다. 이 tower는 유연한 해저지반에 기초하고 있는 튜브형 cantilever로 이상화하였다. Tower와 해수 간의 동적 상호작용, 기초와 지반간의 동적 상호작용이 고려된 유체-구조물-지반 연성계의 지배방정식은 부분구조법과 Rayleigh-Ritz방법에 의해서 유도되었다. 해수는 압축성 비점성 이상 유체로 이상화하였다. 해수로 포화된 층상지반에 놓인 footing의 동적 강성은 Thin Layer법에 의해서 계산하여 상부구조물 모델과 결합시켰다. 이 해석법을 해상풍력발전기 모델의 지진응답해석에 적용하였다. 해석 결과를 준거해와 비교해서 제안한 해석법의 타당성을 검증하였다. Tower의 유연성, 지반의 강성이 해상풍력발전기 지진거동에 미치는 영향을 분석하였다. 유체-구조물 상호작용과 지반-구조물 상호작용의 지진응답에 대한 상대적인 중요도를 비교 평가하였다.

응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석 (Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method)

  • 윤길림;김광진;김홍연
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2401-2409
    • /
    • 2013
  • 응답면 기법(RSM)을 이용하여 해상풍력(OWT) 모노파일에 대한 신뢰성 해석을 수행하였다. 모노파일은 해수면으로부터 15m 깊이에 설치되고 사질토에 근입되는 조건으로 고려하였다. 풍하중 및 파랑하중과 같은 해양환경하중이 작용하는 OWT 모노파일에 대한 신뢰성 해석은 KIOST에서 개발된 신뢰성 해석프로그램인 HSRBD를 이용하였다. OWT 모노파일(직경 6m)의 설계변수에 대한 민감도 분석을 수행한 결과 파일직경이 증가할수록 파일두부에서의 수평변위 및 회전각에 대한 파괴확률은 감소하나 직경이 7m 이상이 되는 경우 파괴확률의 감소율은 작아져 거의 일정해지는 것으로 나타났다. 한편, 국내기준 가운데 파일직경의 1%를 허용수평변위(60mm)로 적용하는 경우 파일의 파괴확률은 1.5%이나 최소기준인 15mm로 고려하는 경우 파괴확률은 60%로 큰 차이가 발생하므로 이에 대한 적절한 설계기준의 정립이 요구된다. 마지막으로 OWT 모노파일의 다양한 설계변수 가운데 기초지반(사질토)에 대한 내부마찰각의 불확실성이 큰 경우 이것이 파일거동에 가장 큰 영향을 미치는 것으로 분석되었으며, 민감도 분석결과는 최적설계와 파괴확률 감소를 위해 어떠한 절차가 필요한지를 보여준다.

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

기획특집 - 거가대교 침매터널의 시공 (Construction of the Busan-Geoje Fixed Links Immersed tunnel)

  • 조봉현
    • 기술사
    • /
    • 제43권2호
    • /
    • pp.34-38
    • /
    • 2010
  • The Busan-Geoje Fixed Link is an 8.2 km long motorway connecting Busan to the island of Geoje where the Korean big two shipbuilding yard locate on. This motorway includes a 3,300m immersed tunnel which is one of the longest immersed tunnel in the world and two cablestayed bridges each of 2km in length. The site locates in a exposed offshore, which is subjected to strong winds, large swell waves and strong tidal currents. These conditions together with the tunnel being at a deepest immersed tunnel ever built and the foundation condition is consisting of a very soft, normally to slightly over consolidated marine clay, makes the project unique and one of the most challenging immersed tunnels ever built.

  • PDF

Estimation of slamming coefficients on local members of offshore wind turbine foundation (jacket type) under plunging breaker

  • Jose, Jithin;Choi, Sung-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.624-640
    • /
    • 2017
  • In this paper, the slamming coefficients on local members of a jacket structure under plunging breaker are studied based on numerical simulations. A 3D numerical model is used to investigate breaking wave forces on the local members of the jacket structure. A wide range of breaking wave conditions is considered in order to get generalized slamming coefficients on the jacket structure. In order to make quantitative comparison between CFD model and experimental data, Empirical Mode Decomposition (EMD) is employed for obtaining net breaking wave forces from the measured response, and the filtered results are compared with the computed results in order to confirm the accuracy of the numerical model. Based on the validated results, the slamming coefficients on the local members (front and back vertical members, front and back inclined members, and side inclined members) are estimated. The distribution of the slamming coefficients on local members is also discussed.

SAR영상에 의한 복잡해안지역 해상풍 분석 (Analysis of Sea Surface Wind over the Complex Coastal Area Using SAR images)

  • 황효정;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.482-483
    • /
    • 2009
  • This paper is foundation paper about national wind map verification using remote sensing, based on analysis of comparison between numerical simulation and remote sensing on complex coastal area of regional coast. As a result analysis using NCAR/NCEP, wind direction of numerical simulation and remote sensing is same. but, wind direction of some case is showed different. Such as this result, if it would be used without verification of analyzed data, present ability of occurring lots of error, and it will be verified based on using survey data or atmospheric data.

  • PDF

잔교식 안벽 해석시 수평지반반력계수의 적용 (Application of the Lateral Subgrade Reaction Modulus in Landing Pier)

  • 박시범;김지용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

변단면 깊은 보의 전단설계 (Shear Design of Deep Beam with Variable Depth)

  • 최정호;김태완;이승훈;엄장섭;진치섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.377-380
    • /
    • 2004
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders. pile caps, foundation walls. and offshore structures. In this paper. the shear behavior and reinforcement effects of simply supported reinforced concrete deep beam with variable depth subject to concentrated loads have been scrutinized using strut-and-tie model to verify the effects of variable depth. The analysis results show that strut-and-tie Model of ACI 318-02 code is very effective method to design of simply supported reinforced concrete deep beam with variable depth.

  • PDF

A study of hydroelastic behavior of hinged VLFS

  • Sun, Yonggang;Lu, Da;Xu, Jin;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.170-179
    • /
    • 2018
  • This paper introduces a new method to study the hydroelastic behavior of hinged Very Large Floating Structures (VLFSs). A hinged two-module structure is used to confirm the present approach. For each module, the hydroelasticity theory proposed by Lu et al. (2016) is adopted to consider the coupled effects of wave dynamics and structural deformation. The continuous condition at the connection position between two adjacent modules is also satisfied. Then the hydroelastic motion equation can be established and numerically solved to obtain the vertical displacement, force and bending moment of the hinged structure. The results calculated by the present new method are compared with those obtained using three-dimensional hydroelasticity theory (Fu et al., 2007), which shows rather good agreement.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.