• Title/Summary/Keyword: Offshore wind foundation installation

Search Result 18, Processing Time 0.026 seconds

Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test (해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구)

  • Kim, Dong-Joon;Kim, Su-Rin;Choo, Yun-Wook;Kim, Dong-Soo;Lee, Man-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

Trend in suction bucket foundation for offshore wind turbine (해상풍력발전설비를 위한 버켓기초의 기술동향 및 기술개발 방향)

  • Youn, Hee-Jung;Jang, In-Sung;Oh, Myoung-Hak;Kwon, O-Soon;Jung, Sung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.494-503
    • /
    • 2010
  • This paper reviews research trend in suction bucket foundation. Wind energy farm has been considered as an efficient alternative to fuel energy as world markets attempt to discover renewable resources. Recently, Korean government initiated the research projects investigating installation method of offshore wind energy foundation and design guideline as well as verifying feasibility of offshore wind farm. In fact, the installation of monopile and gravity type foundation has been sucessfully carried out in European and other advanced countries, and design guideline of those foundations are well established; however, various types of foundation would be necessary in the near future as offshore wind farm demands abundant wind resources in deep sea. In this paper, bucket foundation is spot lighted as a powerful and economic alternative applicable to deep sea condition.

  • PDF

Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation (해상풍력 발전의 기술동향 및 모노파일 기술개발 방향)

  • Choi, Chang-Ho;Cho, Sam-Deok;Kim, Ju-Hyong;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

Nonlinear Structure-Soil Interaction Analysis for the Suction Bucket Foundation of Offshore Wind-Turbine (해상풍력 석션버켓 기초 구조-지반 상호작용 비선형 구조해석 및 실험결과 비교)

  • Jin, Jeongin;Kim, Donghyun;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.469-475
    • /
    • 2016
  • As we are facing the shortage of oil energy, studies on renewable energy, wind energy research has been naturally getting attention. Among wind energies, ocean wind energy is relatively abundant compared to land wind energy and therefore, is getting much attention in terms of its efficiency. However, the problem is the cost. Generally, the cost ratio of the supporting structure is over 25% of the total installation cost of a offshore wind turbine system. Thus, it is very important to reduce the total installation cost of the offshore wind turbine and develop accurate analysis methodology for various offshore wind turbine foundations. In this study, nonlinear structure-soil interaction analyses have been proposed and conducted for the typical suction bucket model of an offshore wind turbine foundation, and the results were compared with experimental test data for numerical validations.

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Scheduling and Cost Estimation Simulation for Transportation and Installation of the Offshore Monopile Wind Turbines (모노파일 해상풍력발전의 이송과 설치를 위한 일정계획 및 비용분석 시뮬레이션)

  • Kim, Boram;Son, Myeong-Jo;Jang, Wangseok;Kim, Tae-Wan;Hong, Keyyong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.193-209
    • /
    • 2015
  • For reasons such as global warming, depletion of fossil fuels and the danger of nuclear energy the research and development of renewable energy is actively underway. Wind energy has advantages over another renewable energy in terms of location requirements, energy efficiency and reliability. Nowadays the research and development area is expanded to offshore because it can supply more wind reliability and free from noise pollution. In this study, the monopile offshore wind turbine transportation and installation (T&I) process are investigated. In addition, the schedule and cost for the process are estimated by discrete event simulation. For the simulation, simulation models for various means of T&I are developed. The optimum T&I execution plan with shortest duration and lowest cost can be found by using different mission start day and T&I means.

Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine

  • Ikjae, Lee;Moohyun, Kim
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.413-437
    • /
    • 2022
  • An innovative concept for wet-transportation and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine is proposed. Case studies for two different mono-bucket and wrap-buoy dimensions are conducted and their hydrostatic and hydrodynamic performances are compared for both wet-towing and lowering operations. The intact stability and transient responses are analyzed in detail for various stages of lowering operation. Wave-induced motion statistics during wet tow in sea state 4 (highest operational window) are checked. The proposed concept is found to be feasible and can be an alternative cost-effective solution without using heavy-lift crane vessel in practice.

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Reliability analysis of laterally loaded piles for an offshore wind turbine support structure using response surface methodology

  • Kim, Sun B.;Yoon, Gil L.;Yi, Jin H.;Lee, Jun H.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.597-607
    • /
    • 2015
  • With an increasing demand of a renewable energy, new offshore wind turbine farms are being planned in some parts of the world. Foundation installation asks a significant cost of the total budget of offshore wind turbine (OWT) projects. Hence, a cost reduction from foundation parts is a key element when a cost-efficient designing of OWT budget. Mono-piles have been largely used, accounting about 78% of existing OWT foundations, because they are considered as a most economical alternative with a relatively shallow-water, less than 30 m of seawater depth. OWT design standards such as IEC, GL, DNV, API, and Eurocode are being developed in a form of reliability based limit state design method. In this paper, reliability analysis using the response surface method (RSM) and numerical simulation technique for an OWT mono-pile foundation were performed to investigate the sensitivities of mono-pile design parameters, and to find practical implications of RSM reliability analysis.