DOI QR코드

DOI QR Code

Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine

  • Ikjae, Lee (Department of Ocean Engineering, Texas A&M University) ;
  • Moohyun, Kim (Department of Ocean Engineering, Texas A&M University)
  • Received : 2022.09.08
  • Accepted : 2022.12.05
  • Published : 2022.12.25

Abstract

An innovative concept for wet-transportation and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine is proposed. Case studies for two different mono-bucket and wrap-buoy dimensions are conducted and their hydrostatic and hydrodynamic performances are compared for both wet-towing and lowering operations. The intact stability and transient responses are analyzed in detail for various stages of lowering operation. Wave-induced motion statistics during wet tow in sea state 4 (highest operational window) are checked. The proposed concept is found to be feasible and can be an alternative cost-effective solution without using heavy-lift crane vessel in practice.

Keywords

Acknowledgement

This research was financially supported by US-DOE NYSERDA (contract #106) NOWRDC program.

References

  1. Abdel-Rahman, K. and Achmus, M. (2006), "Behaviour of monopile and suction bucket foundation systems for offshore wind energy plants", Proceedings of the 5th International Engineering Conference, Sharm El-Sheikh, Egypt.
  2. Applied Acoustic Engineering Ltd., "Wireless acoustic load shackle system", https://www.aaetechnologiesgroup.com/wp-content/uploads/2021/02/Wireless-Acoustic-Load-Shackle---Technical-Specification-Issue-1.pdf.
  3. Aubeny, C.P. (2022), "Simulate suction installation", prepared for New York State Energy Research and Development Authority, Project 106, Vibratory-Installed Bucket Foundation for Fixed Foundation Offshore Wind Towers, Texas Engineering Experiment Station, College Station, Texas.
  4. Aubeny, C.P. and Aldawwas, A. (2022), "Phase 1 comparative evaluation of installation methods", prepared for New York State Energy Research and Development Authority, Project 106, Vibratory-Installed Bucket Foundation for Fixed Foundation Offshore Wind Towers, Texas Engineering Experiment Station, College Station, Texas.
  5. Det Norske Veritas (2000), "DNV-RP-H103 modelling and analysis of marine operations", Det Norske Veritas, Hovik, Oslo, Norway.
  6. Esteban, M.D., Counago, B., Lopez-Gutierrez, J.S., Negro, V. and Vellisco, F. (2015), "Gravity based support structures for offshore wind turbine generators: Review of the installation process", Ocean Eng., 110, 281-291. https://doi.org/10.1016/j.oceaneng.2015.10.033.
  7. Esteban, M.D., Lopez-Gutierrez, J.S. and Negro, V. (2019), "Gravity-based foundations in the offshore wind sector", J. Mar. Sci. Eng., 7(3), 64. https://doi.org/10.3390/jmse7030064.
  8. Feld, T. (2001), "Suction Buckets: a new innovation foundation concept, applied to offshore wind turbines".
  9. Fiorentino, L.A., Heitsenrether, R., Teng, C.C. and Muglia, M. (2019), "Field test results from ellipsoid ADCP buoy moored at the edge of the gulf stream", 2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM).
  10. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C. and Viselli, A. (2020), "Definition of the IEA 15-megawatt offshore reference wind turbine", National Renewable Energy Laboratory: Golden, Colorado, USA.
  11. Hasselmann, K. and Olbers, D. (1973), "Measuremeants of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)", Erganzung zur Deut. Hydrogr. Z., Reihe A, 12, 1-95.
  12. Huang, L., Zhang, J., Yu, X., Randall, R.E. and Wilde, B. (2011), "Numerical simulation on dynamics of suction piles during lowering operations", Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, USA.
  13. Jang, H.K. and Kim, M.H. (2019), "Mathieu instability of arctic spar by nonlinear time-domain simulations", Ocean Eng., 176, 31-45. https://doi.org/10.1016/j.oceaneng.2019.02.029.
  14. Jeong, Y.H., Ko, K.W., Kim, D.S. and Kim, J.H. (2021), "Studies on cyclic behavior of tripod suction bucket foundation system supporting offshore wind turbine using centrifuge model test", Wind Energy, 24(5), 515-529. https://doi.org/10.1002/we.2586.
  15. Jiang, Z. (2021), "Installation of offshore wind turbines: A technical review", Renew. Sust. Energ. Rev., 139, 110576. https://doi.org/10.1016/j.rser.2020.110576.
  16. Journee, J.M. and Massie, W. (2001), Offshore hydromechanics, Delft University of Technology Delft
  17. Lee, C.H. (1995), "WAMIT theory manual", Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  18. Lian, J., Ding, H., Zhang, P. and Yu, R. (2012), "Design of large-scale prestressing bucket foundation for offshore wind turbines", Trans. Tianjin Univ., 18, 79-84. https://doi.org/10.1007/s12209-012-1661-5.
  19. Liang, H., Shao, Y. and Chen, J. (2021), "Higher-order derivatives of the Green function in hyper-singular integral equations", Eur. J. Mech.-B/Fluid., 86, 223-230. https://doi.org/10.1016/j.euromechflu.2020.12.006.
  20. Mazzaretto, O.M., Menendez, M. and Lobeto, H. (2022), "A global evaluation of the JONSWAP spectra suitability on coastal areas", Ocean Eng., 266, 112756. https://doi.org/10.1016/j.oceaneng.2022.112756.
  21. Orcina Ltd., "Payload handling: F07 Suction anchor lowering", https://www.orcina.com/wp-content/uploads/examples/f/f07/F07%20Suction%20anchor%20lowering.pdf.
  22. Pan, Z. (2022), "Application of a BEM model with dipole elements", Ocean Eng., 249, 110938. https://doi.org/10.1016/j.oceaneng.2022.110938.  
  23. Sundt, R.C., Borseth, J.F. and Myhre, L.P. (2009), "A simple acoustic release trap system for live capture of deep-water organisms", Marine Biodiversity Records, 2.
  24. Wang, X.F., Zeng, X.W. and Li, J.L. (2019), "Vertical performance of suction bucket foundation for offshore wind turbines in sand", Ocean Eng., 180, 40-48. https://doi.org/10.1016/j.oceaneng.2019.03.049.
  25. Weisstein, Eric W. "Gill's Method" From MathWorld--A Wolfram. https://mathworld.wolfram.com/GillsMethod.html.
  26. Wu, J. and Kim, M.H. (2021), "Generic upscaling methodology of a floating offshore wind turbine", Energies J., 14, 8490. https://doi.org/10.3390/en14248490.
  27. Zhang, P., Han, Y., Ding, H. and Zhang, S. (2015), "Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines", Ocean Eng., 108, 769-777. https://doi.org/10.1016/j.oceaneng.2015.09.001.