• Title/Summary/Keyword: Offshore wind energy

Search Result 384, Processing Time 0.027 seconds

Loads and motions for a spar-supported floating offshore wind turbine

  • Sultania, Abhinav;Manuel, Lance
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.525-541
    • /
    • 2016
  • An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.

Distribution, flight altitude, and habitat use of birds at the Demonstration Offshore Wind Farm in the Southern Part of the West Sea (서남해 해상풍력 실증단지에서 조류의 분포, 비행고도 그리고 서식지 이용)

  • Jae-Gyun Lim;Jung-Soo Kim;Seung-Jong Jin
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.75-86
    • /
    • 2023
  • We observed five species and 163 individuals of birds in the Demonstration Offshore Wind Farm in the southern part of the West Sea in Korea, and 33 species and 4,023 individuals from Gusipo to Dongho Beach. The most dominant bird in both areas was the black-tailed gull, Larus crassirostris. The flight height of birds for collision risk (wind turbine and bird) was divided into two groups. First, the safe height was from sea level to 20 m (< 20 m), with no effect from the action of revolving blades. Second, the danger height was more than 20 m from sea level (> 20 m), with a collision risk from the action of revolving blades. Birds flying a safe height (< 20 m) were 83.9% (271 individuals) and danger height (> 20 m) were 16.1% (52 individuals). Also, 11.7% of birds (35 individuals) used the inside of the Demonstration Offshore Wind Farm as a habitat for foraging and resting, and 88.3% birds used the outside. We suggest that the risk of collision with the wind farm was low due to the relatively low flight height of birds and distance between wind turbines (> 800 m).

Comparison between Numerical Weather Prediction and Offshore Remote-Sensing Wind Extraction (기상수치모의와 원격탐사 해상풍 축출결과 비교)

  • Hwang, Hyo-Jeong;Kim, Hyun-Goo;Kyong, Nam-Ho;Lee, Hwa-Woon;Kim, Dong-Hyeok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.318-320
    • /
    • 2008
  • Offshore remote-sensing wind extraction using SAR satellite image is an emerging and promising technology for offshore wind resource assessment. We compared our numerical weather prediction and offshore wind extraction from ENVISAT images around Korea offshore areas. A few comparison sets showed good agreement but more comparisons are required to draw application guideline on a statistical basis.

  • PDF

Sustainable use of wind energy (풍력에너지의 환경친화적 이용)

  • Lee, Yeong-Heui
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.2
    • /
    • pp.46-50
    • /
    • 2011
  • Wind energy, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions during operation. However, the construction of wind farms is not universally welcomed because of their visual impact, competing land use, comprising human health impacts, building and crop damage, loss of amenities and ecological impact, impact on wildlife, danger to birds, safety hazard, aesthetics and noise. Offshore wind power, in particular, offers a huge potential to generate clean energy. However, the envisaged massive expansion of wind farms in oceans is already causing severe environmental conflicts. Wind farms cause further harm to already threatened oceans. Wind power has negligible fuel costs, but a high capital cost. The expansion of climate-friendly wind energy use both onshore and offshore can only be successful it the legal and organizational conditions undergo some clear improvements.

  • PDF

Preliminary Estimation of Wind Resource Potential in South Korea (남한 풍력자원 잠재량의 예비적 산정)

  • Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The wind resource potentials of South Korea are estimated as preliminary stage using the national wind map which has been being established by numerical wind simulation and GIS (Geographical Information System) exclusion analysis. The wind resource potentials are classifying into theoretical, geographical, technical and implementation potentials and the calculation results are verified by comparing to other countries' potentials. In GIS exclusion, urban, road, water body, national parks and steep slope area are excluded from onshore geographical potential while water depth and offshore distance from the shoreline are applied as offshore exclusion conditions. To estimate implementation potential, dissemination records of European countries are adopted which is about 1/8 of geographical potential. The implementation potential of South Korea would correspond 12.5GW which is 1.7 times of the national wind energy dissemination target until 2030.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

Economic Assessments of LFAC and HVDC Transmissions for Large Offshore Wind Farms

  • Park, Taesik;Kwak, Nohong;Moon, Chaeju;Cha, Seungtae;Kwon, Seongchul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Offshore wind farms extend a distance from an onshore grid to increase their generating power, but long distance and high power transmissions raise a lot of cost challenges. LFAC (Low Frequency AC) transmission is a new promising technology in high power and low cost power transmission fields against HVDC (High Voltage DC) and HVAC (High Voltage AC) transmissions. This paper presents an economic comparison of LFAC and HVDC transmissions for large offshore wind farms. The economic assessments of two different transmission technologies are analyzed and compared in terms of wind farm capacities (600 MW and 900 MW) and distances (from 25 km to 100 km) from the onshore grid. Based on this comparison, the economic feasibility of LFAC is verified as a most economical solution for remote offshore wind farms.

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF