DOI QR코드

DOI QR Code

Distribution, flight altitude, and habitat use of birds at the Demonstration Offshore Wind Farm in the Southern Part of the West Sea

서남해 해상풍력 실증단지에서 조류의 분포, 비행고도 그리고 서식지 이용

  • Jae-Gyun Lim ;
  • Jung-Soo Kim ;
  • Seung-Jong Jin
  • 임재균 ((주)세광종합기술단, 해상풍력사업부) ;
  • 김정수 (경희대학교, 환경학 및 환경공학과) ;
  • 진승종 (한국해상풍력(주))
  • Received : 2023.11.24
  • Accepted : 2023.12.28
  • Published : 2023.12.31

Abstract

We observed five species and 163 individuals of birds in the Demonstration Offshore Wind Farm in the southern part of the West Sea in Korea, and 33 species and 4,023 individuals from Gusipo to Dongho Beach. The most dominant bird in both areas was the black-tailed gull, Larus crassirostris. The flight height of birds for collision risk (wind turbine and bird) was divided into two groups. First, the safe height was from sea level to 20 m (< 20 m), with no effect from the action of revolving blades. Second, the danger height was more than 20 m from sea level (> 20 m), with a collision risk from the action of revolving blades. Birds flying a safe height (< 20 m) were 83.9% (271 individuals) and danger height (> 20 m) were 16.1% (52 individuals). Also, 11.7% of birds (35 individuals) used the inside of the Demonstration Offshore Wind Farm as a habitat for foraging and resting, and 88.3% birds used the outside. We suggest that the risk of collision with the wind farm was low due to the relatively low flight height of birds and distance between wind turbines (> 800 m).

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구(No. 20203030020080, 해상풍력 단지 해양공간 환경 영향 분석 및 데이터베이스 구축)입니다.

References

  1. Ministry of Trade, Industry and Energy, 2017. 8th Electricity Supply and Demand Plan (2017-2031) (in Korean).
  2. Relevant Ministries, 2019. Reinforcement of Renewable Energy Industry (in Korean).
  3. Hong, M., Choi, J., Kim, J., Yun, S., Kang, K., Bae, G., Lee, W. and Yoo, J., 2019, Necessity of bird monitoring for assessing impacts of offshore wind farms on birds. Journal of Wind Energy, Vol. 10, No. 3, pp. 31-41 (in Korean).
  4. Bevanger, K., 1994. Bird interactions with utility structures: collision and electrocution, causes and mitigating measures. IBIS Vol. 136, pp. 412-425.
  5. Shamoun-Baranes, J., van Loon, E., van Gasteren, H., van Belle, J., Bouꠓten, W. and Buurma, L., 2006. A comparative analysis of the influence of weather on the flight altitudes of birds. Bulletin of the American Meteorological Society, Vol. 87, pp. 47-61.
  6. Garthe, S. and Huppop, O., 2004. Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. Journal of Applied Ecology, Vol. 41, pp. 724-734.
  7. Desholm, M. and Kalhert, J., 2005. Avian collision risk at an off-shore wind farm. Biology Letters Vol. 1, pp. 296-298.
  8. Johnston, A., Cook, A.S., Wright, L.J., Humphreys, E.M. and Burton, N.H., 2014. Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. Journal of Applied Ecology Vol. 51, pp 31-41.
  9. Furness, R.W., Wade, H.M. and Masden, E.A., 2013. Assessing vulnerability of marine bird populations to offshore wind farms. Journal of Environmental Management, Vol. 119, pp. 56-66.
  10. Kim, S., Kim, B., Chang, M., Kyong, N., and Oh, H., 2007, Research on status of waterfowl of Gujwa Region where dffshore wind farm was planed in Jejudo Island. Korean Journal of Ornithology Vol. 14, No. 2, pp 67-75
  11. Kim, J., Namgung, H., Jin, S., Lim, J., Kim Y., Jeon J. and Kim D., 2021, Effects of Wind Power Plants on Bird Distribution. Journal of Wind Energy, Vol. 12, No. 2, pp. 21-29 (in Korean).
  12. Wunderle, Jr. JM., 1994. Census Methods for Caribbean Land Birds. United States Department of Agriculture.
  13. Camphuysen, C.J., Fox, A.D., Leopold, M.F. and Petersen, I.K., 2004. Towards standardised seabirds at sea census techniques in connection with environmental impact assessments for offshore wind farms in the UK: a comparison of ship and aerial sampling methods for marine birds and their applicability to offshore wind farm assessments, COWRIE-BAM-02-2002.
  14. Dierschke, V., Garthe, S. and Mendel, B., 2006. Possible conflicts between offshore wind farms and seabirds in the German sectors of North Sea and Baltic Sea, In Koller, J., Koppel, H. and Peter, W.(Eds). Offshore wind energy: Research on environmental impacts, 121-143. Springer, Berlin, Germany.
  15. Johansen, K.L., Boertmann, D., Mosbech, A. and Hansen, T.B., 2012. Manual for seabird and marine mammal survey on seismic vessels in Greenland. Danish Centre for Environment and Energy, Roskilde, Denmark.
  16. Shannon, C. E. and Weaver, E., 1949, The mathematical theory of communication. University of Illionis Press, Urbana. pp. 1-117.
  17. Pielou EC (1975) Ecological Diversity. Wiley, pp 1-165. New York.
  18. Larsen, J.K. and Guillemette, M., 2007. Effect of wind turbines on flight behaviour of wintering common eiders: implications for habitat use and collision risk. Journal of Applied Ecology Vol. 44, pp. 516-522.
  19. Kruger, T. and Garthe, S., 2001. Flight altitudes of coastal birds in relation to wind direction and speed. Atlantic Seabirds Vol. 3, pp. 203-216.
  20. Cook, A., Johnston, A., Wright, L. and Burton, N., 2012. A review of flight heights and avoidance rates of birds in relation to offshore windfarms. British Trust for Ornithology, Thetford, Norfolk
  21. Desholm, M. and Kahlert, J., 2005. Avian collision risk at an offshore wind farm. Biology Letters Vol. 1, pp. 296-298.
  22. Buckland, S.T., Burt, M.L., Rexstad, E.A., Mellor, M., Williams, A.E. and Woodward, R., 2012 Aerial surveys of seabirds: the advent of digital methods. Journal of Applied Ecology Vol. 49 pp. 960-967.
  23. Bouten, W., Baaij, E.W., Shamoun-Baranes, J. and Camphuysen, C.J., 2013. A flexible GPS tracking system for studying bird behaviour at multiple scales. Journal of Ornithology Vol. 154, pp. 571-580.
  24. Liechti, F., 2006. Birds: blowin' by the wind? Journal of Ornithology Vol. 147, pp. 202-211.
  25. Cooper, B.A. and Ritchie, R.J., 1995. The altitude of bird migration in east central Alaska: a radar and visual study. Journal of Field Ornithology Vol. 66, pp. 590-608.
  26. Kahlert, J.A., Leito, A., Laubek, B., Luigujoe, L., Kuresoo, A., Aaen, K. and Luud, A., 2012. Factors affecting the flight altitude of migrating waterbirds in Western Estonia. Ornis Fennica Vol. 89, pp. 241-253.
  27. Day, R.H., Rose, J.R., Prichard, A.K., Blaha, R.J. and Copper, B.A., 2004. Environmental effects on the fall migration of eiders at Barrow. Alaska. Marine Ornithology Vol. 32, pp. 13-24.
  28. Corman, A. and Garthe, S., 2004. What flight heights tell us about foraging and potential conflicts with wind farms: A case study in Lesser Black-backed Gulls (Larus fuscus). Journal of Ornithology Vol. 155, pp. 1037-1043.
  29. Mendel, B., Kotzerka, J., Sommerfeld, J., Schwemmer, H., Sontag, N. and Garthe, S., 2014. Effects of the alpha ventus offshore test site on istribution patterns, behaviour and flight heights of seabirds. Ecological Research at the Offshore Wind Farm Alpha Ventus-Challenges, Results and Perspectives (eds Federal Maritime and Hydrographic Agency and Federal Ministry for the Environment, Nature Conservation and Nuclear Safety), pp. 95-110. Springer Fachmedien, Wiesbaden, Germany.
  30. Ross-Smith, V.H., Thaxter, C.B., Masden, E.A., Shamoun-Baranes, J., Burton, N.H.K., Wright, L.J., Rehfisch, M.M. and Johnston, A., 2016. Modelling flight heights of lesser black-backed gulls and great skuas from GPS: a Bayesian approach. Journal of Applied Ecology Vol. 53, pp. 1676-685.
  31. Withers, P.C. and Timko, P.L., 1977. The significance of ground effect to the aerodynamic cost of flight and energetics of the black skimmer(Rhyncops nigra). Journal of Experimental Biology Vol. 70, pp. 13-26.
  32. Brown, M., Linton, E. and Rees, E.C., 1992. Causes of mortality among wild swans in Britain. Wildfowl Vol. 43, pp. 70-79.
  33. Rees, E.C., 2006. Bewick's Swan. T. & A.D. Poyser, London, UK.
  34. Fijn R.C., Krijgsveld, K.L., Tijsen, W., Prinsen, H.A.M. and Dirksen, S., 2012. Habitat use, disturbance and collision risks for Bewick's Swans Cygnus columbianus bewickii wintering near a wind farm in the Netherlands. Wildfowl Vol. 62, pp. 97-116.
  35. Stenberg, C., Stottrup, J.G., van Deurs, M., Berg, C.W., Dinesen, G.E., Mosegaard, H., Grome, T.M. and Leonhard, S.B., 2015. Long-term effects of an ofshore wind farm in the North Sea on fsh communities. Marine Ecology Progress Series Vol. 528, pp. 257-265.
  36. Vandendriessche, S., Derweduwen, J. and Hostens, K., 2015. Equivocal effects of offshore wind farms in Belgium on soft substrate epibenthos and fsh assemblages. Hydrobiologia Vol. 756, pp. 19-35.
  37. Vanermen, N., Onkelinx, T., Courtens, W., van Dewalle, M., Verstraete, H. and Stienen, E.W.M., 2015. Seabird avoidance and attraction at an ofshore wind farm in the Belgian part of the North Sea. Hydrobiologia Vol. 756, pp. 51-61.
  38. Masden, E.A., Haydon, D.T., Fox, A.D,, Furness, R.W., Bullman, R. and Desholm, M., 2009. Barriers to movement: impacts of wind farms on migrating birds. ICES Journal of Marine Science Vol. 66, pp. 746-753.
  39. Peschko, V., Mercker, M. and Garthe, S., 2020. Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Marine Biology Vol. 167, pp. 118-131.